
SEMANTIC PARSER ENHANCEMENT FOR DIALOGUE DOMAIN
EXTENSION WITH LITTLE DATA

Su Zhu Lu Chen Kai Sun Da Zheng Kai Yu

Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering
SpeechLab, Department of Computer Science and Engineering

Shanghai Jiao Tong University, Shanghai, China
{paul2204, chenlusz, accreator, yums, kai.yu}@sjtu.edu.cn

ABSTRACT

Statistical semantic parser trained on sufficient in-domain
data has shown robustness to speech recognition errors in
end-to-end spoken dialogue systems. However, when the dia-
logue domain is extended, due to the introduction of new se-
mantic slots, values and unknown speech pattern, the parsing
performance may significantly degrade. Effective re-training
of statistical semantic parser is therefore important. This pa-
per describes a novel semantic parser enhancement approach
for domain extension with very little new data. It employs
automatic pseudo-data generation for parser re-training and
domain independent rescoring to further improve parsing per-
formance. The approach was evaluated on the DSTC3 (the
third Dialog State Tracking Challenge) data corpus. Experi-
ments showed that the proposed approach can yield consistent
and significant improvements across all metrics of semantic
parsing and dialog state tracking.

Index Terms— Spoken language understanding, Dialog
state tracking, Domain adaptation, Semantic parser enhance-
ment

1. INTRODUCTION

Statistical approaches of spoken language understanding
(SLU) trained on sufficient in-domain data have shown to
be robust to errors of automatic speech recognition (ASR)
[1, 2, 3], especially in end-to-end spoken dialogue systems.
Dialog state tracking is a process of estimating a distribution
over all possible dialogue states in statistical spoken dialogue
system [4]. Recently, in dialogue state tracking, statistical se-
mantic parser has also helped improvements of state tracking,
given sufficient labelled data [5, 6].

But when the dialogue domain is extended, the perfor-
mance of a semantic parser might reduce as a result of the in-
troduction of new semantic slots, values and unknown speech
pattern (or ASR hypothesis pattern). The ability for SLU to

This work was supported by the Program for Professor of Special Ap-
pointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and
the China NSFC project No. 61222208.

cope well with the expanded domains and limited training
data is quite attractive to the deployment of commercial di-
alogue systems. Unsupervised training has been shown to be
helpful in expanding domains of SLU system [7]. But in this
paper, semantic parser enhancement methods are adopted for
dialogue domain extended with little labelled example data.

The Dialog State Tracking Challenge (DSTC) provides a
first common testbed in a standard format, along with a suite
of evaluation metrics for dialogue state tracking. The third
Dialog State Tracking Challenge (DSTC3) [8] extended dia-
logue domain in contrast to the Second Dialog State Tracking
Challenge (DSTC2) corpus [9]. There is only a little labelled
data (seed data) for the extended dialogue domain. So, it is
necessary to perform semantic parser enhancement using the
seed data, i.e. example dialogues of the extended domain, and
sufficient dialogue data of the original domain.

This paper proposes two approaches for SLU enhance-
ment in dialog state tracking. First, ASR hypotheses sim-
ulation is used for re-training semantic parsers for the ex-
tended dialogue domain. ASR hypotheses simulation is im-
plemented on word level to generate additional training data
adapted from the original to the extended domain. These new
sentences are generated for the new slots and values, which
contains new sentence patterns and new text contexts of the
values. Unaligned data in SLU is useful since ASR errors
would often make troubles in word-semantic alignment. In
this paper, the method of ASR hypotheses simulation is spe-
cific to the SLU system with unaligned training data [3] which
requires full text sentences for training.

In addition to parser re-training, this paper adopts a novel
method to make use of system act for dialogue domain ex-
tension. System act is the semantics that the machine feeds
back to the user and has good relationship with what the user
would say next. Henderson et al. trained semantic tuple clas-
sifiers by concatenating the text feature and the last system act
feature [2]. But in the extended dialogue domain, it is more
convenient to use the system act features independent of the
dialogue domain. In this paper, the last system act features
independent of dialogue domain are exploited to train a SLU
rescoring system in the original domain and applied to the

semantic parser enhancement in the extended domain.
This paper is organized as follows. In section 2, as two

methods of semantic parser enhancement, ASR hypotheses
simulation and SLU rescoring are described. Section 3 briefly
describes the corpus of the DSTC3 domain and the evaluation
metrics, and presents the results on semantic parsing and dia-
logue state tracking. Finally, section 4 concludes the paper.

2. SEMANTIC PARSER ENHANCEMENT

This section explains how to enhance semantic parser for dia-
logue domain extension. In this task, there is a lot of labelled
data in the original domain. The original domain is smaller
but related to the extended domain. The extended semantic
ontology and a small set of seed data are known in advance.

In this paper, the semantics of an utterance from user is
represented in functor form called dialogue act [10] consist-
ing of an acttype and a list of slot-value pairs, for example:

request(name,food=chinese)
where “request” is the dialogue acttype,“name” is a slot re-
quested, “food=chinese” is a slot-value pair which provides
some information to the system and “food” is informed. They
are all called semantic items.

In semantic parser, slots could be divided into enumer-
able and non-enumerable slots [3]. For example, an enu-
merable slot “pricerange” in DSTC3 is only associated with
“expensive”, “free”, “cheap” and “moderate”, whereas non-
enumerable slots can take any number of possible values the-
oretically (e.g., “foodtype”).

2.1. ASR Hypotheses Simulation and Parser Re-Training

In general, the semantic data of different dialogue domains
can be classified as:

• Domain-independent: Data samples independent of
any specific domain, e.g. users say hello or thank you.

• Domain transferable: Data samples appearing in both
the original and the extended domain.

• Non-transferable & domain constrained: Data sam-
ples specific for one domain, which couldn’t be trans-
ferred to another domain.

ASR hypotheses simulation focuses on generation of the third
part data samples. With these transferred and generated data,
the semantic parser for the extended domain is easy to be
built. The whole process is illustrated in Fig. 1.

2.1.1. Pattern generation

Typically, data pair for SLU parser is denoted as:

text : I need moderately priced swedish food

act : inform(pricerange=moderate,food=swedish)

where the text comes from the user input (transcription or
ASR hypotheses) and act is the corresponding semantics. The

seed data

training
data

in
original
domain

ontologies

generated

data

parser

 pattern
generation

ASR-error
simulation

pseudo-data
 with
 ASR-error

Fig. 1. The architecture of ASR hypotheses simulation.

value set for the non-enumerable slot is usually very large.
Hence it is useful to use a specific class label to replace the
value. After replacement, the training sample become a sam-
ple pattern which contains the text pattern and corresponding
act pattern. Following the example above, the text pattern is
“I need moderately priced [food] food”, and the act pattern is
“inform(pricerange=moderate,food=[food])” where “[food]”
is the class label.

When the original domain is extended, new slots, new val-
ues for original slot and a few new text patterns would appear
in the extended dialogue domain. So it is necessary to gen-
erate enough training sample patterns related to the new slot-
value pairs and new text patterns to train the semantic parser
in the extended domain. It is effective to do the pattern sim-
ulation separately for new slots, new value sets and new text
patterns.

Before pattern generation, it is necessary to discuss about
the word sequence alignment between the text pattern and the
specific slot or value. In this paper, it is assumed that there
is a word sequence corresponding to the slot or value in the
text pattern, which is called spoken pattern. For example,
“pricerange” and “price range” are the spoken patterns of slot
pricerange, “in the south part of town” is one of the spoken
patterns of the value “south” which belongs to the slot area.
In this paper, the spoken patterns for each slot and slot-value
pair are manually summarized as handcraft rules from the la-
belled data. In the furture work, it is possible to map the slot
and value to a sequence of words in an absolutely automatic
process, especially for a large dialogue domain.

For a new slot in the extended domain, it is necessary to
generate new training sample patterns and insert possible val-
ues with the old training sample patterns in the original do-
main. For all training sample patterns (seed text patterns and
seed act patterns) in the seed data of the extended domain
consisting of the new slot ŝ:

• New requested slot: If ŝ is a requested slot in the seed
act patterns, we choose a requestable slot s randomly in
the original domain to get each training sample pattern
with text pattern t and act pattern a consisting of the
requested s. Then, we replace the spoken pattern of s

with that of ŝ in t to get a new text pattern t̂, as well as
replacing s with ŝ in a to get a new act pattern â. Now,
a new training sample pattern t̂ with â is generated for
requesting ŝ.

• New informed slot: If ŝ is an informed slot in the seed
act pattern a, we cut the slot-value pair of ŝ from a to
get the rest act pattern arest. Then it is needed to find
out each training sample pattern (text pattern t and act
pattern a′) in the original domain where the a′ is the
same with arest or a′ is the combination of arest and a
slot-value pair s-v. Then, for each possible value v̂ of
ŝ, we combine t with the spoken pattern of v̂ or replace
the the spoken pattern of v with v̂ in t to get t̂, as well as
combine arest with ŝ = v̂ to get the corresponding act
pattern â. If ŝ is a non-enumerable slot, it needs to do
class replacing first and the possible value of ŝ is only
the class label.

As illustrated in Fig.2, the new training sample pattern is gen-
erated for a new slot in the extended domain.

example sample in the extended domain:
text: does that
act : confirm()

similiar patterns in the original domain:
texts: a [food]
 a [food]
 serve [food]
 serve [food]
act : food=[food]

is there
uh is there
does it have
do they have

an internet
 connection

is there
uh is there
does it
do they

 have an internet connection

+

generated texts:

hasinternet=true

confirm()

Fig. 2. An example for training sample pattern generation,
where ‘have’ is omitted when ‘is’ acts as a predicate in the
sentence.

When a new value v̂ is added for the slot s while s exists
in both the original domain and the extended domain, we do
the generation similar as the above.

• New value & transferable: If s is a non-enumerable
slot (e.g. “name”,“food”), there is no need to do gener-
ation because the values of s are replaced with the same
label no matter in original domain or extended domain.

• New value & extended domain specific: If s is an
enumerable slot (e.g. “pricerange”,“area”), we should
find out each training sample pattern (text pattern t and
act pattern a) in the original domain where a contains
the slot-value pair s-v (v is different with v̂). Then, we
replace the spoken pattern of v with that of v̂ in t to get
new text pattern t̂, as well as replacing v with v̂ in a to
get a new act pattern â.

After pattern generation for new slots and new value sets
from the training sample patterns Po of the original domain,
we get additional training sample patterns Pg for the extended
domain. Po is extracted from the training data Do of the orig-
inal domain.

Likewise as the example data, training sample patterns Pe

from the extended domain seed data might contain the new

patterns which couldn’t be found in the original domain. So
it is necessary to take the new patterns together for training
the semantic parser. However Pe is a small set, it is necessary
to expand it for all unseen possible values, and then generate
new patterns from pe (pe ∈ Pe) consisting of an enumerable
slot s with all the possible values of s. For example, the total
number of all possible values of slot area is 15, but there are
only 3 of them appearing in the seed data, whereas the other
12 values are used in expanding. After Pe is expanded, the
set containing all generated training sample patterns for the
extended domain are Pg + Pe. Finally, fill the class labels of
Pg + Pe with corresponding values of the extended domain
randomly to get the complete data Dg + De. Thus Do,Dg

and De make up the training set of the semantic parser in the
extended domain.

2.1.2. ASR error simulation

The semantic training data with ASR errors is known to pro-
vide robustness to the speech recognition errors so that it is
necessary to involve ASR errors in parser re-training. As
described in the previous subsection, the text pattern can be
extracted from ASR hypotheses or transcription. There are
two approaches to simulate ASR errors for the generated data
samples for these two cases respectively.

Firstly, if the text patterns for generation are extracted
from the ASR hypotheses in the original domain, the ASR
errors are already involved in the generated data Dg + De.
This simple approach is called ASR error tied.

Secondly, if the text patterns for generation are tran-
scriptions, a more complex ASR error simulation method is
applied to simulate ASR errors for Dg +De. This approach
is called word-level confusion. In this method, slots and sen-
tence patterns are separately dealt with. Sentence patterns
are extracted from ASR results from the original domain.
Patterns maintain the whole sentence except slot values are
changed, as seen in the example below:

transcription : moderately priced swedish food
transcription pattern : [pricerange] priced [food] food

ASR output pattern : uh [pricerange] priced [food] code
In which [pricerange] and [food] are slot labels. Transcrip-

tions with same pattern will be combined and their ASR re-
sults are stored as possible simulation results.

All possible slot values are preprocessed to generate pos-
sible error outcomes[11]. Those values are transformed on
phoneme level and then put into a Finite State Transducer net-
work to generate possible errors. All target words are from
seed transcriptions. Example:

slot value : thai

confusion : uhh thai, i, thai a, uh tie, uh thai, tie, thai
When a new transcription is given, the method will generate

simulated ASR results with seen ASR results of its transcrip-
tion pattern and possible confusion of its slot values.

2.1.3. Training

Following the semantic tuple classifiers approach [2, 3], a bi-
nary classifier is trained for each slot-value pair, and predicts
the presence of that slot-value pair in the utterance. Specially,
when slots are requested, a binary classifier is also trained for
each request-slot pair. Similarly, a multi-class classifier is es-
timated for all the dialogue act types. For classifications, we
use Support Vector Machines (SVMs) by the LibSVM pack-
age [12] which can output probabilities. Finally, a decoding
process of these semantic tuples is taken to produce dialogue
acts which might be multiple. This decoding must keep to a
simple set of rules, e.g. dialogue act type request must appear
together with at least one unbounded slot.

The semantic parser is built by exploiting n-gram feature
of user utterances. n is allowed to range from 1 to 3, i.e.
uni-grams, bi-grams and tri-grams are counted to be features.
Also, the n-gram features from the top hypothesis and the
N-best list of ASR hypotheses can be used in the training of
semantic parser respectively.

2.2. Domain-independent SLU Rescoring

As described in the introduction, system dialogue act is help-
ful in semantic parsing and has good relationship with what
the user would say possibly next. However, system dialogue
act may differ distinctly between two different dialogue do-
mains. So it is not possible to train semantic tuple classifiers
by concatenating user utterance feature and system dialogue
act feature [2] in semantic parser enhancement.

In order to solve this problem, an approach using the sys-
tem act feature independent of slot-value is adopted to rescore
the probability of each independently semantic tuple classi-
fier output. Three rescoring models for the semantic tuples
are built: act type rescoring model (a multi-class classifier)
for the act type semantic tuple, request-slot rescoring model
(a binary classifier) for all slot-value semantic tuples and slot-
value pair rescoring model (a binary classifier) for all request-
slot semantic tuples.

The features used in rescoring are listed below:
1. STC score: The output probability of the original se-

mantic tuple classifier (STC).
2. System act type: A feature for each possible system

dialogue act type, giving the indication of whether each
act type exists in the last system act.

3. Acttype-slot: A feature giving the indication of whether
each (acttype, slot) pair exists in the last system act.

4. Slot-value: A feature giving the indication of whether
each (slot, value) pair exists in the last system act.

Hence, there are only Fea.{1,2} available for act type rescor-
ing, Fea.{1,3} for request-slot rescoring and Fea.{1,3,4} for
slot-value pair rescoring.

The rescoring models are trained on the original domain
and transferred to be used in the extended domain. These

classifiers are also trained by using SVMs and their output
probabilities are used as new scores. In this paper, act types
are not rescored for the reason that there are too many act
types to be well estimated.

3. EXPERIMENTS

3.1. The Third Dialog State Tracking Challenge (DSTC3)

DSTC3 is a task of developing robust and accurate state track-
ers to work in an extended dialogue domain. As the original
dialogue domain, the DSTC2 dataset is in the domain of find-
ing a restaurant in Cambridge. The corpus consists of 3235
dialogues with 25501 user utterances totally.

The DSTC3 corpus consists of dialogues in a tourist
information system which could recommend pubs, coffee
shops and restaurants in Cambridge. The dialogue domain of
DSTC3 is more complex than DSTC2. The entire datasets
from DSTC2 are available in DSTC3, as well as a small set
of labelled data in DSTC3. Full details of the corpus are
given in the challenge handbook [9]. But in this paper, the
DSTC3 corpus was split into a train and test set again for
development, and their labels are released after the DSTC3
challenging. These datasets are:

• Seed: 11 labelled example dialogues, the seed data.
• Real-train: the seed data and other 1144 labelled dia-

logues randomly chosen from the DSTC3 corpus.
• Real-test: 1120 dialogues used for evaluation which

are the rest of DSTC3 corpus besides Real-train.

3.2. Semantic Parsing Experiments and Results

As an important metric to estimate the quality of output of a
semantic parser, F-score is the harmonic mean of the preci-
sion and recall of semantic items in the top semantic hypothe-
ses. For statistical dialogue systems, the Item Cross Entropy
(ICE) between the N-best semantic hypothses and the seman-
tic label assesses the overall quality of the semantic items dis-
tribution, and is shown to give a consistent performance rank-
ing for both the confidence scores and the overall correctness
of the semantic parser [13]. The lower ICE indicates the bet-
ter performance.

In DSTC3, the SLU outputs are available and given by
an in-domain semantic parser from the organizers. The SLU
outputs provided by DSTC3 is called Org-train. For guaran-
teeing the comparability, another in-domain semantic parser
is implemented with the semantic tuple classifiers approach
trained on Real-train set by exploiting n-grams feature. As a
baseline system, Seed-train is a more simple approach than
ASR hypotheses simulation in SLU parser domain extension,
with only all DSTC2 data and the DSTC3 seed data after
expanding in section 2.1. The proposed approaches in this
paper are referred to as Simul-train, where the ASR error
tied method is called Err-tied and the word-level confusion
method is called Err-gen.

Train data Error simulation F-score ICE
Org-train 0.820 1.741

Real-train — 0.863 1.060
Seed-train — 0.808 1.734

Simul-train Err-tied 0.831 1.494
Err-gen 0.833 1.483

Table 1. Performances of different semantic parsers evalu-
ated on the Real-test set, as well as trained on the n-grams
feature of ASR 1-best hypothesis. The Simul-train data con-
sists of all DSTC2 data and the generated data in ASR hy-
potheses simulation.

In Table 1, Real-train shows the ideal parser performance
with the best metirc values that the parser is trained with suf-
ficient labelled data of the extended domain. While the bold
indicates the best score of each metric among different seman-
tic parsers, except for Real-train system. Err-tied shows sig-
nificant improvement in contrast to Org-train and Seed-train,
as the p-values of significance testing in each metric are all
nearly 0.01 (smaller than 0.05). Err-gen improves all metrics
slightly to be better than Err-tied result. Although Err-gen
has no significant difference with Err-tied, it is still used as a
better system as it shows constantly better in each metric.

Train Data n-best Prec. Recall F-score ICE

Real-train 1 0.914 0.818 0.863 1.060
10 0.911 0.829 0.868 1.090

Err-gen 1 0.870 0.799 0.833 1.483
10 0.855 0.798 0.826 1.759

Table 2. Performances of different enhanced parsers based
on ASR n-best list on the Real-test set. Err-gen means the
data from ASR hypotheses simulation with the ASR error sim-
ulation method of word-level confusion.

The ASR N-best list is known to provide stronger features
than the ASR 1-best hypothesis for semantic parser [2]. As
Table 2 shows, N-best list features increase the F-score but
increase the ICE slightly in the parsers (rows 1 and 2) trained
on Real-train. But the semantic parsers trained on Err-gen
(rows 3 and 4) don’t improve the F-score or ICE either by
using N-best list. The ASR error simulation method adopted
here didn’t generate errors well on N-best list.

Table 3 shows that the method of SLU rescoring with the
last system act feature improves each SLU metric slightly.
Although the SLU rescoring doesn’t get significant improve-
ment, it is used in our best system.

The previous experiments only concern a single parser.
Since Org-train is provided by the DSTC3 organizer, it is in-
teresting to investigate whether parser combination can help
or not. Table 4 shows Err-gen with rescoring gets significant
improvement in the ICE , after being combined with Org-train

Parser Prec. Recall F-score ICE
Real-train 0.914 0.818 0.863 1.060

+ system act 0.926 0.822 0.871 0.970
Err-gen 0.870 0.799 0.833 1.483

+ rescore 0.871 0.801 0.834 1.483

Table 3. Performances of different parsers trained with ASR
1-best output, on the Real-test set. The parser trained on
Real-train uses the last system act by concatenating the sys-
tem act feature. The parser trained on Err-gen data uses the
last system act by rescoring.

by score averaging. Because of that the Org-train helps se-
mantic parsing in ASR error patterns which didn’t exist in
ASR hypotheses simulation. The combined parser of Err-gen
with rescoring and Org-train is named as the refined parser
which will be used in the next subsection.

Parser Prec. Recall F-score ICE
Org-train 0.850 0.792 0.820 1.741

Err-gen + rescore 0.871 0.801 0.834 1.483
+ Org-train (refined) 0.870 0.796 0.831 1.265

Table 4. Performances of semantic parser combination on the
Real-test set. refined is used to refer to the combined parser.

3.3. Dialog State Tracking Challenge Results

This subsection shows the performance of semantic parser
enhancement in the DSTC3 challenge, assuming that the
DSTC3 corpus is not labelled besides the seed data. The
evaluation dataset contains Real-train (excepts for the seed
data) and Real-test set in section 3.1.

In dialog state tracking, the hidden dialogue states consist
of three components: user’s joint goals, search method, re-
quest slots. The user’s joint goals specify the user’s search
constraints. In this paper, the data and evaluation metrics we
used come from DSTC2&3 [9]. Acc denotes the accuracy
of the top-scored hypothesis at each turn, and L2 denotes the
squared l2 norm between the estimated score distribution and
correct distribution. The dialog state tracker used in this pa-
per is a novel rule-based model which is depicted as a spe-
cial kind of polynomial functions satisfying some linear con-
straints, and outperformed all four baselines in DSTC3 [14].

Table 5 shows the SLU results on the DSTC3 challenge
evaluation. The submitted 1 semantic parser is the one which
we used in the DSTC3 challenge. The refined is the best

1The SLU output comes from the combination of three parsers: the Err-
tied method on the train set of DSTC2, Err-tied method on all datasets of
DSTC2 and the Org-train. This combination overfits the DSTC2 domain to
get higher F-score as the DSTC3 specific slots appear not often. But these
specific slots will stay in the latent dialog states to impact the tracker.

semantic parser which we found after the challenge and de-
scribed in the previous subsection.

Parser Prec. Recall F-score ICE
Org-train 0.852 0.797 0.824 1.719
Submitted 0.881 0.811 0.845 1.235

Refined 0.870 0.801 0.834 1.229

Table 5. SLU results of DSTC3 challenge evaluation.

Table 6 shows the tracker results of DSTC3 evaluation
on different semantic outputs. The submitted is reported as
‘team5/entry0’ in the DSTC3 challenge, which outperforms
all four baselines. The tracker results on the refined SLU
output which we provided after the challenge show signifi-
cant improvement in joint goals. But it decreases the request-
slots accuracy in contrast to the submitted, as the combination
doesn’t alway provide gains on each metric.

Parser Joint goal Method Request
Acc. L2 Acc. L2 Acc. L2

Org-train 0.582 0.690 0.967 0.062 0.909 0.161
Submitted 0.610 0.556 0.968 0.091 0.945 0.090
Refined 0.626 0.551 0.968 0.080 0.924 0.098

Table 6. Tracker results of DSTC3 challenge evaluation.

4. CONCLUSIONS

This paper describes two novel approaches of semantic parser
enhancement for dialogue domain extension with little la-
belled data of the extended domain. The ASR hypotheses
simulation provided very good performance in terms of both
the F-score and ICE metric. The domain-independent SLU
rescoring provided an improvement again, eventhough only
slightly. Moreover, for DSTC3 challenge, the SLU output
combination improved the quality of SLU probability dis-
tribution. The SLU enhancement also helps in dialog state
tracking.

Future work should include the automatic extraction of
spoken patterns for the corresponding slot and value. In fu-
ture, we also plan to investigate how to simulate ASR errors
on word level, especially for unseen words in the previous
data. In general, the N-best list feature should provide bet-
ter performance on SLU which wasn’t achieved in this paper.
Furthermore the scoring for the pseudo N-best ASR hypothe-
ses will be explored in future work.

5. REFERENCES

[1] Christian Raymond and Giuseppe Riccardi, “Generative
and discriminative algorithms for spoken language un-
derstanding,” in INTERSPEECH, 2007, pp. 1605–1608.

[2] Matthew Henderson, Milica Gasic, Blaise Thomson,
and et al, “Discriminative spoken language understand-
ing using word confusion networks,” in SLT, 2012, pp.
176–181.

[3] François Mairesse, Milica Gasic, Filip Jurcı́cek, and
et al, “Spoken language understanding from unaligned
data using discriminative classification models,” in Pro-
ceedings of ICASSP, 2009.

[4] Matthew Henderson, Blaise Thomson, and Jason
Williams, “The second dialog state tracking challenge,”
in Proceedings of the SIGdial 2014 Conference, Balti-
more, USA, June, 2014.

[5] Kai Sun, Lu Chen, Su Zhu, and Kai Yu, “The SJTU
system for dialog state tracking challenge 2,” in 15th
Annual Meeting of the Special Interest Group on Dis-
course and Dialogue, 2014, p. 318.

[6] Jason D Williams and Jason Williams, “Web-style rank-
ing and SLU combination for dialog state tracking,” in
15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 2014, p. 282.

[7] Larry Heck and Dilek Hakkani-Tur, “Exploiting the
semantic web for unsupervised spoken language under-
standing,” in SLT, 2012, pp. 228–233.

[8] Matthew Henderson, Blaise Thomson, and Jason
Williams, “Announcing the Third Dialog State Track-
ing Challenge,” 2014.

[9] Matthew Henderson, Blaise Thomson, and Jason
Williams, “Dialog State Tracking Challenge 2 & 3,”
2013.

[10] Steve Young, “CUED standard dialogue acts,” Re-
port, Cambridge University Engineering Department,
14th October, 2007.

[11] Jost Schatzmann, Blaise Thomson, and Steve Young,
“Error simulation for training statistical dialogue sys-
tems,” in Automatic Speech Recognition & Understand-
ing, 2007. ASRU. IEEE Workshop on. IEEE, 2007, pp.
526–531.

[12] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: a li-
brary for support vector machines,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 2, no.
3, pp. 27, 2011.

[13] Blaise Thomson, Kai Yu, Milica Gasic, and et al, “Eval-
uating semantic-level confidence scores with multiple
hypotheses,” in INTERSPEECH, 2008, pp. 1153–1156.

[14] Kai Sun, Lu Chen, Su Zhu, and Kai Yu, “A general-
ized rule based tracker for dialogue state tracking,” in
submitted to IEEE SLT 2014, 2014.

