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Abstract
Dialogue state tracking (DST) is a process to estimate the distribution of the dialogue states as a
dialogue progresses. Recent studies on constrained Markov Bayesian polynomial (CMBP) frame-
work take the first step towards bridging the gap between rule-based and data-driven approaches for
DST. In this paper, a novel hybrid framework – recurrent polynomial network (RPN) is proposed to
further improve the combination of rule-based and data-driven approaches. RPN’s unique structure
enables the framework to have all the advantages of CMBP including efficiency, portability and in-
terpretability. Additionally, RPN achieves more properties of data-driven approaches than CMBP.
RPN was evaluated on the data corpora of the second and the third Dialog State Tracking Chal-
lenge (DSTC-2/3). Experiments showed that RPN can significantly outperform both traditional
rule-based approaches and data-driven statistical approaches with similar feature set. Compared
with the state-of-the-art data-driven statistical DST approaches with a lot richer features, RPN is
also competitive.
Keywords: Statistical Dialogue Management, Dialogue State Tracking, Recurrent Polynomial
Network

1. Introduction

A task-oriented spoken dialogue system (SDS) is a system that can interact with a user to accomplish
a predefined task through speech. It usually has three modules: input, output and control, shown in
Figure 1. The input module consists of automatic speech recognition (ASR) and spoken language
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understanding (SLU), with which the user speech is converted into text and semantics-level user
dialogue acts are extracted. Once the user dialogue acts are received, the control module, also called
dialogue management accomplishes two missions. One mission is called dialogue state tracking
(DST), which is a process to estimate the distribution of the dialogue states, an encoding of the
machine’s understanding about the conversion as a dialogue progresses. Another mission is to
choose semantics-level machine dialogue acts to direct the dialogue given the information of the
dialogue state, referred to as dialogue decision making. The output module converts the machine
acts into text via natural language generation and generates speech according to the text via text-to-
speech synthesis.

Dialogue management is the core of a SDS. Traditionally, dialogue states are assumed to be ob-
servable and hand-crafted rules are employed for dialogue management in most commercial SDSs.
However, because of unpredictable user behaviour, inevitable ASR and SLU errors, dialogue state
tracking and decision making are difficult (Williams and Young, 2007). Consequently, in recent
years, there is a research trend from rule-based dialogue management towards statistical dialogue
management. Partially observable Markov decision process (POMDP) framework offers a well-
founded theory to both dialogue state tracking and decision making in statistical dialogue manage-
ment (Roy et al., 2000; Zhang et al., 2001; Williams and Young, 2005, 2007; Thomson and Young,
2010; Gašić and Young, 2011; Young et al., 2010). In previous studies of POMDP, dialogue state
tracking and decision making are usually investigated together. In recent years, to advance the re-
search of statistical dialogue management, the DST problem is raised out of the statistical dialogue
management framework so that a bunch of models can be investigated for DST.
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Figure 1: Diagram of a spoken dialogue system (SDS)

Most early studies of POMDP on DST were devoted to generative models (Young et al., 2010),
which learn joint probability distribution over observation and labels. Fundamental weaknesses of
generative model was revealed by the result of (Williams, 2012). In contrast, discriminative state
tracking models have been successfully used for SDSs (Deng et al., 2013). Compared to generative
models where assumptions about probabilistic dependencies of features are usually needed, dis-
criminative models directly model probability distribution of labels given observation, enabling rich
features to be incorporated. The results of the Dialog State Tracking Challenge (DSTC) (Williams
et al., 2013; Henderson et al., 2014b,a) further demonstrated the power of discriminative statisti-
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cal models, such as Maximum Entropy (MaxEnt) (Lee and Eskenazi, 2013), Conditional Random
Field (Lee, 2013), Deep Neural Network (DNN) (Sun et al., 2014a), and Recurrent Neural Network
(RNN) (Henderson et al., 2014d). In addition to discriminative statistical models, discriminative
rule-based models have also been investigated for DST due to their efficiency, portability and inter-
pretability and some of them showed good performance and generalisation ability in DSTC (Zilka
et al., 2013; Wang and Lemon, 2013). However, both rule-based and statistical approaches have
some disadvantages. Statistical approaches have shown large variation in performance and poor
generalisation ability due to the lack of data (Williams, 2012). Moreover, statistical models usu-
ally have more complex model structure and features than rule-based models, and thus can hardly
achieve efficiency, portability and interpretability as rule-based models. As for rule-based models,
their performance is usually not competitive to the best data-driven statistical approaches. Addition-
ally, since they require lots of expert knowledge and there is no general way to design rule-based
models with prior knowledge, they are typically difficult to design and maintain. Furthermore, there
lacks a way to improve their performance when training data are available.

Recent studies on constrained Markov Bayesian polynomial (CMBP) framework take the first
step towards bridging the gap between rule-based and data-driven approaches for DST (Sun et al.,
2014b; Yu et al., 2015). CMBP formulate rule-based DST in a general way and allow data-driven
rules to be generated. Concretely, in the CMBP framework, DST models are defined as polynomial
functions of a set of features whose coefficients are integer and satisfy a set of constraints where
prior knowledge is encoded. The optimal DST model is selected by evaluating each model on
training data. Yu et al. (2015) further extended CMBP to real-coefficient polynomial where the real
coefficients can be estimated by optimizing the DST performance on training data using grid search.
CMBP offers a way to improve the performance when training data are available and achieves
competitive performance to the state-of-the-art data-driven statistical approaches, while at the same
time keeping most of the advantages of rule-based models. Nevertheless, adding features to CMBP
is not as easy as to most data-driven statistical approaches because on the one hand, the features
usually need to be probability related features, on the other hand, additional prior knowledge is
needed to constrain the search space. For the same reason, increasing the model complexity, such
as by using higher-order polynomial, by introducing hidden variables, etc. also requires additional
suitable prior knowledge to be introduced to limit the search space. Moreover, CMBP can hardly
fully utilize the labelled data because in practice its polynomial coefficients are set by grid search.

In this paper, a novel hybrid framework, referred to as recurrent polynomial network (RPN), is
proposed to further improve the combination of rule-based and data-driven approaches for DST. Al-
though the basic idea for transforming rules to neural networks has been there for many years (Cloete
and Zurada, 2000), few work has been done for dialogue state tracking. RPN can be regarded as a
kind of human interpretable computation network, and its unique structure enables the framework to
have all the advantages of CMBP including efficiency, portability and interpretability. Additionally,
RPN achieves more properties of data-driven approaches than CMBP. In general, RPN has neither
restriction to feature type, nor search space issue to be concerned about, so adding features and
increasing the model complexity are much easier in RPN. Furthermore, RPN can better explore the
parameter space than CMBP with labelled data.

The DSTCs have provided the first common testbed in a standard format, along with a suite of
evaluation metrics to facilitate direct comparisons among DST models (Williams et al., 2013). To
evaluate the effectiveness of RPN for DST, both the dataset from the second Dialog State Tracking
Challenge (DSTC-2) which is in restaurants domain (Henderson et al., 2014b) and the dataset from
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the third Dialog State Tracking Challenge (DSTC-3) which is in tourists domain (Henderson et al.,
2014a) are used. For both of the datasets, the dialogue state tracker receives SLUN -best hypotheses
for each user turn, each hypothesis having a set of act-slot-value tuples with a confidence score. The
dialogue state tracker is supposed to output a set of distributions of the dialogue state. In this paper,
only joint goal tracking, which is the most difficult and general task of DSTC-2/3, is of interest.

The rest of the paper is organized as follows. Section 2 discusses ways of combining rule-based
and data-driven approaches. Section 3 formulates RPN. The RPN framework for DST is described
in section 4, followed by experiments in section 5. Finally, section 6 concludes the paper.

2. Combining Rule-based and Data-driven Approaches

Broadly, it is straightforward to come up with two possible ways to combine rule-based and data-
driven approaches: one starts from rule-based models, while the other starts from data-driven mod-
els. CMBP takes the first way, which is derived as an extension of a rule-based model (Sun et al.,
2014b; Yu et al., 2015). Inspired by the observation that many rule-based models such as models
proposed by Wang and Lemon (2013) and Zilka et al. (2013) are based on Bayes’ theorem, in the
CMBP framework, a DST rule is defined as a polynomial function of a set of probabilities since
Bayes’ theorem is essentially summation and multiplication of probabilities. Here, the polynomial
coefficients can be seen as parameters. To make the model have good DST performance, prior
knowledge or intuition is encoded to the polynomial functions by setting certain constraints to the
polynomial coefficients, and the coefficients can further be optimized by data-driven optimization.
Therefore, starting from rule-based models, CMBP can directly incorporate prior knowledge or
intuition into DST, while at the same time, the model is allowed to be data-driven.

More concretely, assuming that both slot and value are independent, a CMBP model can be
defined as

bt+1(v) = P
(
bt(v), P+

t+1(v), P−t+1(v), P̃+
t+1(v), P̃−t+1(v), 1, brt

)
s.t. constraints (1)

where bt(v), P+
t (v), P−t (v), P̃+

t (v), P̃−t (v), brt are all probabilistic features which are defined as
below:

• bt(v): belief of “the value being v at turn t”

• P+
t (v): sum of scores of SLU hypotheses informing or affirming value v at turn t

• P−t (v): sum of scores of SLU hypotheses denying or negating value v at turn t

• P̃+
t (v) =

∑
v′ /∈{v,None} P

+
t (v′)

• P̃−t (v) =
∑

v′ /∈{v,None} P
−
t (v′)

• brt : belief of the value being ‘None’ (the value not mentioned) at turn t, i.e. brt = 1 −∑
v′ 6=None bt(v

′)
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and P(·) is a multivariate polynomial function1

P(ι0, · · · , ιD) =
∑

0≤k1≤···≤kn≤D
gk1,··· ,kn

∏
1≤i≤n

ιki (2)

where D + 1 is the number of input variables, n is the order of the polynomial, gk1,··· ,kn is the
parameter of CMBP. Order 3 gives good trade-off between complexity and performance, hence
order 3 is used in our previous work (Sun et al., 2014b; Yu et al., 2015) and this paper. Since both
slot independence and value independence are assumed in this paper, the belief of the joint goal

(slot1 = v1, slot2 = v2, . . . , slotN = vN ) is
N∏
i=1

b(vi).

The constraints in equation (1) encode all necessary probabilistic conditions (Yu et al., 2015).
For instance,

0 ≤ P+
t (v) + P̃+

t (v) ≤ 1 (3)

0 ≤ bt(v) ≤ 1 (4)

The constraints in equation (1) also encode prior knowledge or intuition (Yu et al., 2015). For
example, the rule “goal belief should be unchanged or positively correlated with the positive scores
from SLU” can be represented by

∂P
(
bt(v), P+

t+1(v), P−t+1(v), P̃+
t+1(v), P̃−t+1(v), 1, brt

)
∂P+

t+1(v)
≥ 0 (5)

The definition of CMBP formulates a search space of rule-based models, where it is easy to
employ data-driven criterion to find a rule-based model with good performance. Considering CMBP
is originally motivated from Bayesian probability operation which leads to the natural use of integer
polynomial coefficients (g ∈ Z), the data-driven optimization can be formulated by an integer
programming program (Sun et al., 2014b; Yu et al., 2015). Additionally, CMBP can also be viewed
as a data-driven approach. Hence, the polynomial coefficients can be extended to real numbers. The
optimization of real-coefficient can be done by first getting an integer-coefficient CMBP and then
performing hill climbing search (Yu et al., 2015).

3. Recurrent Polynomial Network

Recurrent polynomial network, which is proposed in this paper, takes the other way to combine rule-
based and data-driven approaches. The basic idea of RPN is to enable a kind of data-driven model
to take advantage of prior knowledge or intuition by using the parameters of rule-based models to
initialize the parameters of data-driven models.

Computational networks have been researched for decades from very basic architectures such
as perceptron (Rosenblatt, 1958) to today’s various kinds of deep neural networks. Recurrent com-
putational networks, a class of computational networks which have recurrent connections, have also
been researched for a long time, from fully recurrent networks to networks with relatively com-
plex structures such as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997). Like
common neural networks, RPN is a data-driven approach so it is as easy to add features and try

1. The notation of
∑

0≤k1≤···≤kn≤D is shorthand for series of n nested sums over ranges bounded, i.e.∑
0≤k1≤D

∑
k1≤k2≤D . . .

∑
kn−1≤kn≤D .
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complex structures in RPN as in neural networks. However, compared with common neural net-
works which are “black boxes”, an RPN can essentially be seen as a polynomial function. Hence,
considering that a CMBP is also a polynomial function, the encoded prior knowledge and intuition
in CMBP can be transferred to RPN by using the parameters of CMBP to initialize RPN. In this
way, it combines rule-based models and data-driven models.

A recurrent polynomial network is a computational network. The network contains multiple
edges and loops. Each node is either an input node, which is used to represent an input value, or a
computation node. Each node x is set an initial value u(0)x at time 0, and its value is updated at time
1, 2, · · · . Both the type of edges and the type of nodes decide how the nodes’ values are updated.
There are two types of edges. One type, referred to as type-1, indicates the value updating at time t
takes the value of a node at time t − 1, i.e. type-1 edges are recurrent edges, while the other type,
referred to as type-2, indicates the value updating at time t takes another node’s value at time t.
Except for loops made of “type-1” edges, the network should not have loops. For simplicity, let Ix
be the set of nodes y which are linked to node x by a type-1 edge, Îx be the set of nodes y which
are linked to node x by a type-2 edge. Based on these definitions, two types of computation nodes,
sum and product, are introduced. Specifically, at time t > 0, if node x is a sum node, its value u(t)x
is updated by

u(t)x =
∑
y∈Ix

wx,yu
(t−1)
y +

∑
y∈Îx

ŵx,yu
(t)
y (6)

where w, ŵ ∈ R are the weights of edges.
Similarly, if node x is a product node, its value is updated by

u(t)x =
∏
y∈Ix

u(t−1)y

Mx,y
∏
y∈Îx

u(t)y
M̂x,y (7)

where Mx,y and M̂x,y are integers, denoting the multiplicity of the type-1 edge −→yx, and the multi-
plicity of the type-2 edge −→yx respectively. It is noted that only w, ŵ are parameters of RPN while
Mx,y, M̂x,y are constant given the structure of an RPN.

𝑎 𝑏

𝑐 𝑑
1.0

0.5

Figure 2: A simple example of RPN. The type of nodes a, b, c, d are input, input, product, and
sum respectively. Edge

−→
dd is of type-1, while the other edges are of type-2. M̂a,c = 2,

M̂b,c = M̂c,d = Md,d = 1.

Let u(t), û(t) denote the vector of computation nodes’ values and the vector of input nodes’
values at time t respectively, then a well-defined RPN can be seen as a polynomial function as
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below.
u(t) = P

(
û(t),u(t−1), 1

)
(8)

where P is defined by equation (2). For example, for the RPN in figure 2, its corresponding poly-
nomial function is

(u(t)c , u
(t)
d ) =P

(
u(t)a , u

(t)
b , u

(t−1)
c , u

(t−1)
d , 1

)
=
(

(u(t)a )
2
u
(t)
b , 0.5u

(t−1)
d + (u(t)a )

2
u
(t)
b

)
(9)

Each computation node can be regarded as an output node. For example, for the RPN in figure
2, node c and node d can be set as output nodes.

4. RPN for Dialogue State Tracking

As introduced in section 1, in this paper, the dialogue state tracker receives SLU N -best hypotheses
for each user turn, each hypothesis having a set of act-slot-value tuples with a confidence score.
The dialogue state tracker is supposed to output a set of distributions over the joint user goal, i.e.,
the value for each slot. For simplicity and consistency with the work of Sun et al. (2014b) and
Yu et al. (2015), slot and value independence are assumed in the RPN model for dialogue state
tracking2, though neither CMBP nor RPN is limited to the assumptions. In the rest of the pa-
per, bt(v), P+

t (v), P−t (v), P̃+
t (v), P̃−t (v) are abbreviated by bt, P

+
t , P

−
t , P̃

+
t , P̃

−
t respectively in

circumstances where there is no ambiguity.

4.1 Structure

Before describing details of the structure used in the real situations, to help understand the corre-
sponding relationship between RPN and CMBP, let’s first look at a simplified case with a smaller
feature set and a smaller order, which is a corresponding relationship between the RPN shown in
figure 3 and 2-order polynomial (10) with features bt−1, P+

t , 1:

bt = 1− (1− bt−1)(1− P+
t )

= bt−1 + P+
t − P

+
t bt−1

(10)

Recall that a CMBP of polynomial order 2 with 3 features is the following equation (refer to
equation (2)):

P(ι0, ι1, ι2) =
∑

0≤k1≤k2≤2
gk1,k2

∏
1≤i≤2

ιki (11)

2. For DSTC-2/3 tasks, one slot can have at most one value, i.e. 0 ≤
∑

v 6=None bt(v) ≤ 1. Since value independence
is assumed, to strictly maintain that relation, the belief is rescaled to ensure the sum of the belief of each value
plus the belief of ‘None’ to be 1 when the belief is being output. Actually, to enable RPN strictly maintain that
relation, our original design of RPN had a “normalization” step when passing the belief from turn t to turn t+1. The
“normalization” step will rescale the belief to make the sum of the belief of each value plus the belief of ‘None’ to
be 1. Our later experiment, however, demonstrated that there was no significant performance difference between the
RPN with and without the “normalization” step. Therefore, in practice, for simplicity, the “normalization” step can
be omitted, value independence can be assumed, and the only thing needed is to rescale the belief when it is being
output.
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𝑏𝑡−2 𝑃𝑡−1
+ 1

𝑏𝑡−1

−10 1 0 1 0

𝑏𝑡−1 𝑃𝑡
+ 1

𝑏𝑡

−10 1 0 1 0

𝑏𝑡 𝑃𝑡+1
+ 1

𝑏𝑡+1

−10 1 0 1 0

Figure 3: A simple example of RPN for DST.

The RPN in figure 3 has three layers. The first layer only contains input nodes. The second
layer only contains product nodes. The third layer only contains sum nodes. Every product node in
the second layer denotes a monomial of order 2 such as (bt−1)

2, bt−1, P
+
t and so on. Every product

node in the second layer is linked to the sum node in the third layer whose value is a weighted sum
of value of product nodes. With weight set according to coefficients in equation (10), the value of
sum node in the third layer is essentially the bt in equation (10).

Like the above simplified case, a layered RPN structure shown in figure 4 is used for dialogue
state tracking in our first trial which essentially corresponds to 3-order CMBP, though the RPN
framework is not limited to the layered topology. Recall that a CMBP of polynomial order 3 is used
as shown in the following equation (refer to equation (2)):

P(ι0, · · · , ιD) =
∑

0≤k1≤k2≤k3≤D
gk1,k2,k3

∏
1≤i≤3

ιki (12)

𝑏𝑡−2 𝑃𝑡−1
+ 𝑃𝑡−1

−  𝑃𝑡−1
+  𝑃𝑡−1

− 1 𝑏𝑡−1 𝑃𝑡
+ 𝑃𝑡

−  𝑃𝑡
+  𝑃𝑡

− 1 𝑏𝑡 𝑃𝑡+1
+ 𝑃𝑡+1

−  𝑃𝑡+1
+  𝑃𝑡+1

− 1

𝑏𝑡−1 𝑏𝑡 𝑏𝑡+1

𝑤,  𝑤 𝑤,  𝑤 𝑤,  𝑤

Figure 4: RPN for DST.

Let (l, i) denote the index of i-th node in the l-th layer. The detailed definitions of each layer
are as follows:

• First layer / Input layer:

Input nodes are features at turn t, which corresponds to variables in CMBP in section 2. i.e.
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– u
(t)
(1,0) = bt−1

– u
(t)
(1,1) = P+

t

– u
(t)
(1,2) = P−t

– u
(t)
(1,3) = P̃+

t

– u
(t)
(1,4) = P̃−t

– u
(t)
(1,5) = 1

While 7 features are used in previous work of CMBP (Sun et al., 2014b; Yu et al., 2015), only
6 of them are used in RPN with feature brt−1 removed3. Since our experiments showed the
performance of CMBP would not become worse without feature brt−1, to make the structure
more compact, brt−1 is not used in this paper for RPN. In accordance to this, CMBP mentioned
in the rest of paper does not use this feature either.

• Second layer:

The value of every product node in the second layer is a monomial like the simplified case.
And every product node has indegree 3 which is corresponding to the order of CMBP.

Every monomial in CMBP is the product of three repeatable features. Correspondingly, the
value of every product node in second layer is the product of values of three repeatable nodes
in the first layer. Every triple (k1, k2, k3)(0 ≤ k1 ≤ k2 ≤ k3 ≤ 5) is enumerated to create a
product node x = (2, i) in second layer that nodes (1, k1), (1, k2), (1, k3) are linked to. i.e.
Îx = {(1, k1), (1, k2), (1, k3)}. And thus u(t)x = u

(t)
1,k1

u
(t)
1,k2

u
(t)
1,k3

.

And different node in the second layer is created by a distinct triple. So given the 6 input

features, there are
5∑

k1=0

5∑
k2=k1

5∑
k3=k2

1 =
(
6+3−1

3

)
= 56 nodes in the second layer.

To simplify the notation, a bijection from nodes to monomials is defined as:

F : {x|x is the index of a node in the 2nd layer} → {(k1, k2, k3)|0 ≤ k1 ≤ k2 ≤ k3 ≤ D}
(13)

F(x) = (k1, k2, k3)⇐⇒ u
(t)
2,i = u

(t)
1,k1

u
(t)
1,k2

u
(t)
1,k3

(14)

where D + 1 = 6 is the number of nodes in the first layer, i.e. input feature dimension.

• Third layer:

The value of sum node x = (3, 0) in the third layer is corresponding to the output value of
CMBP.

Every product nodes in the second layer are linked to it. Node x’s value u(t)3,0 is a weighted

sum of values of product node u(t)2,i where the weights correspond to gk1,k2,k3 in equation (12).

3. brt is the belief of value being ‘None’, whose precise definition is given in section 2.
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With only sum and product operation involved, every node’s value is essentially a polynomial
of input features. And just like recurrent neural network, node at time t can be linked to node at
time t+ 1. That is why this model is called recurrent polynomial network.

The parameters of the RPN can be set according to CMBP coefficients gk1,k2,k3 in equation (12)
so that the output value is the same as the value of CMBP, which is a direct way of applying prior
knowledge and intuition to data-driven models. It is explained in detail in section 4.4.

4.2 Activation Function

In DST, the output value is a belief which should lie in [0, 1], while values of computational nodes
are not bound by certain interval in RPN. Experiments showed that if weights are not properly set
in RPN and a belief bt−1 output by RPN is larger than 1, then bt may grow much larger because bt
is the weighted sum of monomials such as (bt−1)

3. Belief of later turns such as bt+10 will tend to
infinity.

Therefore, an activation function is needed to map bt to a legal belief value (referred to as b′t)
in (0, 1). 3 kinds of functions, the logistic function, the clip function, and the softclip function have
been considered. A logistic function is defined as

logistic(x) =
L

1 + e−η(x−x0)
(15)

It can map R to (0, 1) by setting L = 1. However, since basically the RPN designed for dialogue
state tracking does similar operation as CMBP which is motivated from Bayesian probability oper-
ation (Yu et al., 2015), intuitively we expect the activation function to be linear on [0, 1] so that little
distortion is added to the belief.

As an alternation, a clip function is defined as

clip(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

(16)

It is linear on [0, 1]. However, if b′t = clip(bt), bt 6∈ [0, 1] and L is the loss function,

∂L
∂bt

=
∂L
∂b′t

∂b′t
∂bt

=
∂L
∂b′t
× 0 = 0 (17)

Thus, ∂L
∂bt

would be 0 whatever ∂L
∂b′t

is. This gradient vanishing phenomenon may affect the effec-
tiveness of backpropagation training in section 4.5.

So an activation function softclip(·) is introduced, which is a combination of logistic function
and clip function. Let ε denote a small value such as 0.01, δ denote the offset of sigmoid function
such that sigmoid (ε− 0.5 + δ) = ε. Here the sigmoid function refers to the special case of the
logistic function defined by the formula

sigmoid(x) =
1

1 + e−x
(18)

The softclip function is defined as

softclip(x) ,


sigmoid (x− 0.5 + δ) if x ≤ ε
x if ε < x < 1− ε
sigmoid (x− 0.5− δ) if x ≥ 1− ε

(19)
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Figure 5: Comparison among clip function, logistic function, and softclip function

softclip : R→ (0, 1) is a non-decreasing, continuous function. However, It is not differentiable
when x = ε or x = 1− ε. So we defined its derivative as follows:

∂softclip(x)

∂x
,


∂sigmoid(x−0.5+δ)

∂x if x ≤ ε
1 if ε < x < 1− ε
∂sigmoid(x−0.5−δ)

∂x if x ≥ 1− ε
(20)

It is like a clip function. However, its derivative may be small on some inputs but is not zero.
Figure 5 shows the comparison among clip function, logistic function, and softclip function. Ac-
cording to the result of an experiment done on the DSTC-2 dataset where RPNs using different
activation functions are trained dstc2trn and tested on dstc2dev, softclip function has demon-
strated better performance than both clip and logistic function4, and is thus used in the rest of the
paper.

With the activation function, a new type of computation node, referred to as activation node, is
introduced. Activation node only takes one input and only has one input edge of type-2, i.e |Îx| = 1
and Ix = ∅. The value of an activation node x is calculated as

u(t)x = softclip
(
u(t)x

)
(21)

where x denotes the input node of node x. i.e. Îx = {x}.
The activation function is used in the rest of the paper. Figure 6 gives an example of RPN with

activation function, whose structure is constructed by adding an activation function to the RPN in
figure 4.

4. The accuracy and L2 of RPNs with clip, logistic, and softclip function are (0.779, 0.329), (0.789, 0.352), (0.790,
0.317) respectively. In particular, logistic functions with several different η are evaluated and the result reported here
is the best one.
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Figure 6: RPN for DST with activation functions

4.3 Further Exploration on Structure

Adding features to CMBP is not easy because additional prior knowledge is needed to add to keep
the search space not too large. Concretely, adding features can introduce new monomials. Since the
trivial search space is exponentially increasing as the number of monomials, the search space tends
to be too large to explore when new features are added. Hence, to reduce the search space, additional
prior knowledge is needed, which can introduce new constraints to the polynomial coefficients. For
the same reason, increasing the model complexity also requires additional suitable prior knowledge
to be added to limit the search space not too large in CMBP.

In contrast to that, since RPN can be seen as a data-driven model, it is as easy as most data-driven
statistical approaches such as RNN to add new features to RPN and use more complex structures.
At the same time, no matter what new features are used and how complex the structure is, RPN
can always take advantage prior knowledge and intuition which is discussed in section 4.4. In this
paper, both new features and complex structure are explored.

Adding new features can be done by just adding input nodes which correspond to the new
features, and then adding product nodes corresponding to the new possible monomials introduced by
the new features. In this paper, for slot s, value v at turn t, in addition to f0 ∼ f5 which are defined
as bt−1(v), P+

t (v), P−t (v), P̃+
t (v), P̃−t (v), and 1 respectively, 4 new features are investigated. f6

and f7 are features of system acts at the last turn: for slot s, value v at turn t,

• f6 , canthelp(s, t, v) ∪ canthelp.missing slot value(s, t) =1 if the system cannot offer
a venue with the constraint s = v or the value of slot s is not known for the selected venue,
otherwise 0.

• f7 , select(s, t, v) =1 if the system asks the user to pick a suggested value for slot s, other-
wise 0.

f6 and f7 are introduced because user is likely to change their goal if given machine acts canthelp(s, t, v),
canthelp.missing slot value(s, t) and select(s, t, v). f8 and f9 are features of user acts at the
current turn: for slot s, value v at turn t,

• f8 , inform(s, t, v) = 1 if one of SLU hypotheses from the user is informing slot s is v,
otherwise 0.
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• f9 , deny(s, t, v) =1 if one of SLU hypotheses from the user is denying slot s is v, otherwise
0.

f8 and f9 are features about SLU act type, introduced to make system robust when the confidence
scores of SLU hypothesis are not reliable.

In this paper, the complexity of evaluating and training RPN for DST would not increase sharply
because a constant order 3 is used and number of product nodes in the second layer grows from 56
to 220 when number of features grows from 6 to 10.

In addition to new features, RPN of more complex structure is also investigated in this paper.
To capture some property just like belief bt of dialogue process, a new sum node x = (3, 1) in
the third layer is introduced. The connection of (3, 1) is the same as (3, 0), so it introduces a new
recurrent connection. The exact meaning of its value is unknown. However, it is the only value
used to record information other than bt of previous turns. Every other input features except bt are
features of current turn t. Compared with bt, there are fewer restrictions on the value of (3, 1) since
its value is not directly supervised by the label. Hence, introducing (3, 1) may help to reduce the
effect of inaccurate labels.

The structure of the RPN with 4 new features and 1 new sum node, together with new activation
nodes introduced in section 4.2 is shown in figure 7.
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𝑓9
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Figure 7: RPN with new features and more complex structure for DST

4.4 RPN Initialization

Like most neural network models such as RNN, the initialization of RPN can be done by setting
each weight, i.e. w and ŵ, to be a small random value. However, with its unique structure, the
initialization can be much better by taking advantage of the relationship between CMBP and RPN
which is introduced in section 4.1.

When RPN is initialized according to a CMBP, prior knowledge and constraints are used to
set RPN’s initial parameters as a suboptimum point in the whole parameter space. RPN as a data-
driven model can fully utilize the advantages of data-driven approaches. RPN is better than real
CMBP while they both use data samples to train parameters. In the work of Yu et al. (2015), real-
coefficient CMBP uses hill climbing to adjust parameters that are initially not zero and the change
of parameters are always a multiple of 0.1. RPN can adjust all parameters including parameters
initialized as 0 concurrently, while the complexity of adjusting all parameters concurrently is nearly
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the same as adjusting one parameter in CMBP. Besides, the change of parameters can be large or
small, depending on learning rate. Thus, RPN and CMBP both are combining rule-based models
and data-driven ones, while RPN is a data-driven model utilizing rule advantages and CMBP is a
rule model utilizing data-driven advantages.

In fact, given a CMBP, an RPN can achieve the same performance as the CMBP just by setting
its weights according to the coefficients of the CMBP. To illustrate that, the steps of initializing the
RPN in figure 7 with a CMBP of features f0 ∼ f9 is described below.

First, to ensure that the new added sum node x = (3, 1) will not influence the output bt in RPN
with initial parameters, ŵx,y is set to 0 for all y. So node x’s value u(t)x is always 0.

Next, considering the RPN in figure 7 has more features than CMBP does, the weights related
the new features should be set to 0. Specifically, suppose node x is the sum node in the third layer
in RPN denoting bt before activation and node y is one of the product nodes in the second layer
denoting a monomial, if product node y is products of features f6, f7, f8, f9 or the added sum node,
then node y’s value is not a monomial in CMBP, then weights ŵx,y should be set to 0.

Finally, if product node y is the product of features f0 ∼ f5, suppose the order of CMBP is 3,
then F(y) = (k1, k2, k3) defined in equation (13) should satisfy 0 ≤ k1 ≤ k2 ≤ k3 ≤ 5. Weights
ŵxy should be initialized as gk1,k2,k3 which is the coefficient of fk1fk2fk3 in CMBP. Thus,

wx,y =

{
gk1,k2,k3 if x = (2, 0) and F(x) = (k1, k2, k3)

0 otherwise
(22)

For RPN of other structures, the initialization can be done by following similar steps.
Experiments show that after training, there are only a few weights larger than 0.1, no matter

using CMBP or random initialization.

4.5 Training RPN

Suppose T (d) is the number of turns in dialogue d, H(d, s, t) is the set of values corresponding to
slot s appearing in SLU hypothesis in turn t in dialogue d, bd,s,t(v) is the output belief of value v in
dialogue d and ld,s,t(v) is the indicator of goal s = v being part of joint goal at turn t in the label of
dialogue d. The cost function is defined as

L =
1∑

d T (d)

∑
d

T (d)−1∑
t=0

∑
s

∑
v∈∪ti=0H(d,s,i)

(bd,s,t(v)− ld,s,t(v))2 (23)

Training process of a mini-batch can be divided into two parts: forward pass and backward pass.

Forward Pass For each training sample, every node’s value at every time is evaluated first. When
evaluating u(t)x , values of nodes in Ix and Îx should be evaluated before. The computation formula
should be based on the type of node x. In particular, for a layered RPN structure, we can simply
evaluate ut1x1 earlier than ut2x2 if t1 < t2 or t1 = t2 and x1’s layer number is smaller than x2’s.

Backward Pass Backpropagation through time (BPTT) is used in training RPN. Let error of node
x at time t be δ(t)x = ∂L

∂u
(t)
x

. If a node x is an output node, then δ(t)x should be initialized according

to its label lt and output value u(t)x , otherwise δ(t)x should be initialized to 0. After a node’s error
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foreach Mini batch m do
Initialize ∆wxy = 0,∆ŵx,y = 0 for every x, y
Initialize the value of recurrent node at turn 0 as 0
foreach Training dialogue d, slot s, value v in mini batch m do

T ← the number of turns of current training sample
/* forward pass */
for t← 1 to T do

for d← 1 to 4 do
foreach node x in time t, layer d do

evaluate u(t)x
if x is output node then

δ
(t)
x ← 2(u

(t)
x − lt)

else
δ
(t)
x ← 0

/* backward pass */
for t← T to 1 do

for d← 4 to 1 do
foreach node x in time t, layer d do

foreach node y ∈ Îx do
/* Node y is linked to node x by a "type-2"

edge */

δ
(t)
y ← δ

(t)
y + δ

(t)
x

∂u
(t)
x

∂u
(t)
y

foreach node y ∈ Ix do
/* Node y is linked to node x by a "type-1"

edge */

δ
(t−1)
y ← δ

(t−1)
y + δ

(t)
x

∂u
(t)
x

∂u
(t−1)
y

for t← 1 to T do
for d← 1 to 4 do

foreach sum node x in time t, layer d do
foreach node y ∈ Îx do

∆ŵxy ← ∆ŵxy + αδ
(t)
x u

(t)
y

foreach node y ∈ Ix do
∆wxy ← ∆wxy + αδ

(t)
x u

(t−1)
y

foreach edge(x, y) do
wxy ← wxy −∆wxy
ŵxy ← ŵxy −∆ŵxy

Algorithm 1: Training Algorithm of RPN for DST
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δ
(t)
x is determined, it can be passed to δ(t−1)y (y ∈ Ix) and δ(t)y (y ∈ Îx). Error passing should follow

the reversed edge’s direction. So the order of nodes passing error can follow the reverse order of
evaluating nodes’ values.

When every δ(t)x has been evaluated, the increment on weight ŵxy can be calculated by

∆ŵxy = α
∂L
∂ŵxy

= α

T∑
i=1

∂L
∂u

(t)
x

∂u
(t)
x

∂ŵxy

= α
T∑
i=1

δ(t)x u(t)y

(24)

where α is the learning rate. ∆wxy can be evaluated similarly.
Note that only wxy and ŵxy are parameters of RPN.
The complete formula of evaluating node value u(t)x and passing error δ(t)x can be found in

appendix.
In this paper, mini-batch is used in training RPN for DST with batch size 8. In each training

epoch, ∆wxy and ∆ŵxy are calculated for every training sample and added together. The weight
wxy and ŵxy is updated by

wxy = wxy −∆wxy (25)

ŵxy = ŵxy −∆ŵxy (26)

The pseudocode of training is shown in algorithm 1.

5. Experiment

As introduced in section 1, in this paper, DSTC-2 and DSTC-3 tasks are used to evaluate the pro-
posed approach. Both tasks provide training dialogues with turn-level ASR hypotheses, SLU hy-
potheses and user goal labels. The DSTC-2 task provides 2118 training dialogues in restaurants do-
main (Henderson et al., 2014b), while in DSTC-3, only 10 in-domain training dialogues in tourists
domain are provided, because the DSTC-3 task is to adapt the tracker trained on DSTC-2 data to
the new domain with very few dialogues (Henderson et al., 2014a). Table 1 summarizes the size of
datasets of DSTC-2 and DSTC-3.

Task Dataset #Dialogues Usage
dstc2trn 1612 Training

DSTC-2 dstc2dev 506 Training
dstc2eval 1117 Test

DSTC-3
dstc3seed 10 Not used
dstc3eval 2265 Test

Table 1: Summary of data corpora of DSTC-2/3

The DST evaluation criteria are the joint goal accuracy and the L2 (Henderson et al., 2014b,a).
Accuracy is defined as the fraction of turns in which the tracker’s 1-best joint goal hypothesis is
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correct, the larger the better. L2 is the L2 norm between the distribution of all hypotheses output
by the tracker and the correct goal distribution (a delta function), the smaller the better. Besides,
schedule 2 and labelling scheme A defined in (Henderson et al., 2013) are used in both tasks. Specif-
ically, schedule 2 only counts the turns where new information about some slots either in a system
confirmation action or in the SLU list is observed. Labelling scheme A is that the labelled state
is accumulated forwards through the whole dialogue. For example, the goal for slot s is “None”
until it is informed as s = v by the user, from then on, it is labelled as v until it is again informed
otherwise.

It has been shown that the organiser-provided live SLU confidence was, at best, a noisy sig-
nal (Zhu et al., 2014; Sun et al., 2014a). Hence, most of the state-of-the-art results from DSTC-2
and DSTC-3 used refined SLU (either explicitly rebuild a SLU component or take the ASR hy-
potheses into the trackers (Williams, 2014; Sun et al., 2014a; Henderson et al., 2014d,c; Kadlec
et al., 2014; Sun et al., 2014b)). In accordance to this, except for the results directly taken from
other papers (shown in table 5 and 6), all experiments in this paper used the output from a refined
semantic parser (Zhu et al., 2014; Sun et al., 2014a) instead of the live SLU provided by the orga-
nizer.

For all experiments, MSE is used as the training criterion. MSE is chosen because of two
reasons: (i) MSE can directly reflect L2 performance which is one of the main metrics in DSTCs.
(ii) Experiment has shown that some other criterion such as cross-entropy loss cannot lead to better
performance. For both DSTC-2 and DSTC-3 tasks, dstc2trn and dstc2dev are used, 60% of
the data is used for training and 40% for validation, unless otherwise stated. Validation is performed
every 5 epochs. Learning rate is set to 0.6 initially. During the training, learning rate is halved each
time the performance does not increases. Training is stopped when the learning rate is sufficiently
small, or the maximum number of training epochs is reached. Here, the maximum number of
training epochs is set to 40. L2 regularization is used for all the experiments. The parameter of L2
regularization is set to be the one leading to the best performance on dstc2dev when trained on
dstc2trn. L1 regularization is not used since it cannot yield better performance.

5.1 Investigation on RPN Configurations

This section describes the experiments comparing different configurations of RPN. All experiments
were performed on both the DSTC-2 and DSTC-3 tasks.

As indicated in section 4.4, an RPN can be initialized by a CMBP. Table 2 shows the perfor-
mance comparison between initialization with a CMBP and with random values. In this experi-
ment, the structure shown in figure 6 is used. The performance of initialization with random values
reported here is the average performance of 10 different random seeds, and their standard devia-
tions are given in parentheses. The random scheme used is the one with the best performance on
dstc2dev when trained on dstc2trn among various kinds of random initialization schemes.

The performance of the RPN initialized by random values is compared with the performance of
the RPN initialized by the integer-coefficient CMBP. Here, the CMBP has 12 non-zero coefficients
and has the best performance on dstc2dev when trained on dstc2trn. It can be seen from
table 2 that the RPN initialized by the CMBP coefficients outperforms the RPN initialized by ran-
dom values moderately on dstc2eval and significantly on dstc3eval (p-value< 0.05). This
demonstrates the encoded prior knowledge and intuition in CMBP can be transferred to RPN to
improve RPN’s performance, which is one of RPN’s advantage, combining rule-based models and
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Initialization
dstc2eval dstc3eval

Acc L2 Acc L2

Random 0.753 (0.008) 0.468 (0.020) 0.633 (0.005) 0.667 (0.026)
CMBP 0.756 0.373 0.648 0.553

Table 2: Performance comparison between the RPN initialized by random values, and the RPN
initialized by the CMBP coefficients on dstc2eval and dstc3eval.

data-driven models. In the rest of the experiments, all RPNs use CMBP coefficients for initializa-
tion.

Since section 4.3 shows that it is convenient to add features and try more complex structures,
it is interesting to investigate RPNs with different feature sets and structures, as shown in table 3.
It can be seen that while no obvious correlation between the performance and different configura-
tions of feature sets and structures can be observed on dstc2eval and dstc3eval, RPNs with
new features and new recurrent connections have achieved slightly better performance on accuracy,
though the performance difference is not significant. In the rest of the paper, both new features and
new recurrent connections are used in RPN, unless otherwise stated.

Feature Set
New Recurrent dstc2eval dstc3eval

Connections Acc L2 Acc L2

f0 ∼ f5 No
0.756 0.373 0.648 0.553

f0 ∼ f9 0.757 0.374 0.650 0.557
f0 ∼ f5 Yes

0.756 0.373 0.648 0.553
f0 ∼ f9 0.757 0.374 0.650 0.549

Table 3: Performance comparison among RPNs with different configurations on dstc2eval and
dstc3eval.

5.2 Comparison with Other DST Approaches

The previous subsection investigates how to get the RPN with the best configuration. In this subsec-
tion, the performance of RPN is compared to both rule-based and data-driven statistical approaches.
To make fair comparison, all data-driven models together with RPN in this subsection use similar
feature set. Altogether, 2 rule-based trackers and 3 data-driven trackers were built for performance
comparison.

• MaxConf is a rule-based model commonly used in spoken dialogue systems which always
selects the value with the highest confidence score from the 1st turn to the current turn. It was
used as one of the primary baselines in DSTC-2 and DSTC-3.

• HWU is a rule-based model proposed by Wang and Lemon (2013). It is regarded as a simple,
yet competitive baseline of DSTC-2 and DSTC-3.
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Type System
dstc2eval dstc3eval
Acc L2 Acc L2

Rule
MaxConf 0.668 0.647 0.548 0.861

HWU 0.720 0.445 0.594 0.570

Data-driven
DNN 0.719 0.469 0.628 0.556

MaxEnt 0.710 0.431 0.607 0.563
LSTM 0.736 0.418 0.632 0.549

Hybrid
CMBP 0.755 0.372 0.627 0.546
RPN 0.756 0.373 0.648 0.553

Table 4: Performance comparison among RPN, rule-based and data-driven approaches with similar
feature set on dstc2eval and dstc3eval. The performance of CMBP in the table is
the performance of the RPN which has been initialized but not been trained.

• DNN is a data-driven statistical model using deep neural network model (Sun et al., 2014a)
with probability feature as RPN. Since DNN does not have recurrent structures while RPN
does, to fairly take into account this, the DNN feature set at the tth turn is defined as⋃

i∈{t−9,··· ,t}

{
P+
i (v), P−i (v), P̃+

i (v), P̃−i (v)
}
∪
{
P̂ (t)

}

where P̂ (t) is the highest confidence score from the 1st turn to the tth turn. The DNN has 3
hidden layers with 64 nodes per layer.

• MaxEnt is also a data-driven statistical model using Maximum Entropy model (Sun et al.,
2014a) with the same input features as DNN.

• LSTM is another data-driven statistical model using long short-term memory model (Hochre-
iter and Schmidhuber, 1997) with the same input features as RPN. It has similar structure as
the DNN model (Sun et al., 2014a) except for its hidden layers using LSTM blocks. The
LSTM used here has 3 hidden layers with 100 LSTM blocks per layer.

It can be observed that, with similar feature set, RPN can outperform both rule-based and data-
driven approaches in terms of joint goal accuracy. Statistical significance tests were also performed
assuming a binomial distribution for each turn. RPN was shown to significantly outperform both
rule-based and data-driven statistical approaches at 95% confidence level. For L2, RPN is competi-
tive to both rule-based and the data-driven statistical approaches.

5.3 Comparison with State-of-the-art DSTC Trackers

In the DSTCs, the state-of-the-art trackers mostly employed data-driven statistical approaches. Usu-
ally, richer feature set and more complicated model structures than the data-driven statistical models
in section 5.2 are used. In this section, the proposed RPN approach is compared to the best sub-
mitted trackers in DSTC-2/3 and the best CMBP trackers, regardless of fairness of feature selection
and the SLU refinement approach. RPN is compared and the results are shown in table 5 and table
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System Approach Rank Acc L2
Baseline* Rule 5 0.719 0.464

Williams (2014) LambdaMART 1 0.784 0.735
Henderson et al. (2014d) RNN 2 0.768 0.346

Sun et al. (2014a) DNN 3 0.750 0.416
Yu et al. (2015) Real CMBP 2.5 0.762 0.436

RPN RPN 2.5 0.757 0.374

Table 5: Performance comparison among RPN, real-coefficient CMBP and best trackers of DSTC-
2 on dstc2eval. Baseline* is the best results from the 4 baselines in DSTC2.

6. Note that structure shown in figure 7 with richer feature set and a new recurrent connection is
used here.

Note that, in DSTC-2, the Williams (2014)’s system employed batch ASR hypothesis infor-
mation (i.e. off-line ASR re-decoded results) and cannot be used in the normal on-line model in
practice. Hence, the practically best tracker is Henderson et al. (2014d). It can be observed from ta-
ble 5, RPN ranks only second to the best practical tracker among the submitted trackers in DSTC-2
in accuracy and L2. Considering that RPN only used probabilistic features and very limited added
features and can operate very efficiently, it is quite competitive.

System Approach Rank Acc L2
Baseline* Rule 6 0.575 0.691

Henderson et al. (2014c) RNN 1 0.646 0.538
Kadlec et al. (2014) Rule 2 0.630 0.627
Sun et al. (2014b) Int CMBP 3 0.610 0.556
Yu et al. (2015) Real CMBP 1.5 0.634 0.579

RPN RPN 0.5 0.650 0.549

Table 6: Performance comparison among RPN, real-coefficient CMBP and best trackers of DSTC-
3 on dstc3eval. Baseline* is the best results from the 4 baselines in DSTC3.

It can be seen from table 6, RPN trained on DSTC-2 can achieve state-of-the-art performance on
DSTC-3 without modifying tracking method5, outperforming all the submitted trackers in DSTC-
3 including the RNN system. This demonstrates that RPN successfully inherits the advantage of
good generalization ability of rule-based model. Considering the feature set and structure of RPN
are relatively simple in this paper, future work will investigate richer features and more complex
structures.

6. Conclusion

This paper proposes a novel hybrid framework, referred to as recurrent polynomial network, to
improve the combination of the rule-based approaches and data-driven approaches. With the ability

5. The parser is refined for DSTC-3 (Zhu et al., 2014).
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of incorporating prior knowledge into a data-driven framework, RPN has the advantages of both
rule-based and data-driven approaches. Experiments on two DSTC tasks showed that the proposed
approach not only is more stable than many major data-driven statistical approaches, but also has
competitive performance, outperforming many state-of-the-art trackers.

Since the RPN in this paper only used probabilistic features and very limited added features, the
performance of RPN can be influenced by how reliable the SLU’s confidence scores are. Therefore,
future work will investigate the influence of SLUs on the performance of RPN, and rich features
for RPN. Moreover, future work will also address applying RPN to other domains, such as the bus
timetables domain in DSTC-1, and theoretic analysis of RPN.
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Appendix

Derivative calculation

Using MSE as the criterion, δ(t)x = ∂L
∂u

(t)
x

is initialized as following6:

δ(t)x =

{
2(u

(t)
x − ld,s,t(v)) if x is a output node calculating bd,s,t(v)

0 otherwise
(27)

Suppose node x is an activation node and f(·) = softclip(·), let y = x,

δ(t)y =
∂L
∂u

(t)
y

=
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t)
y

= δ(t)x
∂f(u

(t)
y )

∂u
(t)
y

(28)

6. The symbols used in this section such as Î , I , M̂ , M follow the definitions in section 3.
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Suppose node x = (d, i) is a sum node, then when node x passes its error, the error of node
y ∈ Îx is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t)
y

= δ(t)y + δ(t)x ŵx,y

(29)

Similarly, error of node y ∈ Ix is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t−1)
y

= δ(t)y + δ(t)x wx,y

(30)

Suppose node x = (d, i) is a product node, then when node x passes its error, error of node
y ∈ Îx is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t)
y

= δ(t)y + δ(t)x M̂x,yu
(t)
y

M̂x,y−1 ∏
z∈Îx−{y}

u(t)z
M̂x,z

∏
z∈Ix

u(t−1)z

Mx,z
(31)

Similarly, error of node y ∈ Ix is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t−1)
y

= δ(t)y + δ(t)x Mx,yu
(t−1)
y

Mx,y−1 ∏
z∈Îx

u(t)z
M̂x,z

∏
z∈Ix−{y}

u(t−1)z

Mx,z

(32)
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