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Abstract Statistical dialogue management is the core of

cognitive spoken dialogue systems (SDS) and has attracted

great research interest. In recent years, SDS with the ability

of evolution is of particular interest and becomes the cutting-

edge of SDS research. Dialogue state tracking (DST) is a pro-

cess to estimate the distribution of the dialogue states at each

dialogue turn, given the previous interaction history. It plays

an important role in statistical dialogue management. To pro-

vide a common testbed for advancing the research of DST,

international DST challenges (DSTC) have been organised

and well-attended by major SDS groups in the world. This

paper reviews recent progresses on rule-based and statistical

approaches during the challenges. In particular, this paper is

focused on evolvable DST approaches for dialogue domain

extension. The two primary aspects for evolution, semantic

parsing and tracker, are discussed. Semantic enhancement

and a DST framework which bridges rule-based and statisti-

cal models are introduced in detail. By effectively incorporat-

ing prior knowledge of dialogue state transition and the abil-

ity of being data-driven, the new framework supports reliable

domain extension with little data and can continuously im-

prove with more data available. This makes it excellent candi-

date for DST evolution. Experiments show that the evolvable

DST approaches can achieve the state-of-the-art performance

and outperform all previously submitted trackers in the third

DSTC.
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1 Introduction

A task-oriented spoken dialogue system (SDS) is a system

that can continuously interact with human to accomplish a

predefined task through speech. It usually consists of three

modules: input, output and control, as shown in Fig. 1. The

input module mainly consists of automatic speech recogni-

tion (ASR) and spoken language understanding (SLU), with

which semantics-level user dialogue acts are extracted from

acoustic speech signals. With the input user dialogue acts,

the control module, referred to as dialogue management, ac-

complishes two missions. One is to maintain its internal state,

an encoding of the machine’s understanding about the whole

conversation. When information is received from the input

module, the state space is updated, which is called dialogue

state tracking (DST). Another mission is to choose a ma-

chine action, also at semantics-level, based on the dialogue

state space according to a policy to direct the dialogue. This

is referred to as dialogue decision making. The output mod-

ule consists of natural language generation (NLG) and text-

to-speech (TTS) synthesis, with which machine dialogue acts

are converted to audio.

Dialogue management is the core of a dialogue system.

Traditionally, most commercial spoken dialogue systems as-

sume observable dialogue states and employ hand-crafted

rules for dialogue management, such as dialogue flow-chart.
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Fig. 1 Diagram of a spoken dialogue system (SDS)

Since dialogue state is observable, no tracking is needed.

Dialogue decision is simply a set of mapping rules from

state to machine action. This is referred to as rule-based di-

alogue management. However, unpredictable user behaviour,

inevitable automatic speech recognition and spoken language

understanding errors make it difficult to maintain the true di-

alogue state and make decision. Hence, in recent years, there

is a research trend towards statistical dialogue management.

A well-founded theory for this is the partially observable

Markov decision process (POMDP), which can provide ro-

bustness to errors from input module and automatic pol-

icy optimisation by reinforcement learning [1–4]. Under the

POMDP framework, both dialogue state tracking and deci-

sion making are often modelled using statistical approaches.

Recently, to advance the research of statistical dialogue man-

agement, researchers start to formulate dialogue state track-

ing as an independent problem so that a bunch of machine

learning algorithms can be investigated. The dialogue state

tracking challenge (DSTC) provides the first common testbed

in a standard format, along with a suite of evaluation metrics

for this purpose [5–9].

In most studies of POMDP SDS, domain and ontology, in-

cluding slots, values and relation between slots, are assumed

to be static and usually very simple. Although lab-scale sta-

tistical SDS of highly constrained domain has shown sig-

nificant improvement over traditional rule-based SDS, do-

main ontology and semantics in real world tasks are usu-

ally open, and migrating SDS has become a frequent require-

ment. Hence, evolvable SDS becomes increasingly important

in both research community and industry. To reflect this, the

third DSTC provides a task of domain extension.

This paper reviews various DST approaches in the DSTCs,

including rule-based and statistical approaches. In particular,

how to build an evolvable tracker is the focus. Two issues

need to be addressed here: extension of the semantic parser

to include new slots/values and modification of the tracker

for the new domain. Semantic enhancement using data aug-

mentation provides an effectively way to extend statistical se-

mantic parser without losing the ability of being tolerant to

speech recognition errors. On the tracker side, a newly pro-

posed framework to bridge the rule-based and statistical ap-

proaches is introduced. Two models within the framework,

constrained markov bayesian polynomial (CMBP) [10] and

recurrent polynomial network (RPN) [11], are discussed in

detail. Since the new framework can effectively incorporate

general knowledge of state transition, its initial performance

is stable across different domains. On the other hand, both

models can continuously improve with more data available.

These characteristics make the framework particularly useful

for evolvable DST.

The paper is organized as follows. Section 2 introduces

evolvable dialogue state tracking. In Section 3, the evolv-

able parser is described. Section 4 reviews and compares the

different methods for dialogue state tracking, Section 5 de-

scribes CMBP and RPN. Experiments are detailed in Section

6, followed by the conclusion in Section 7.

2 Evolvable dialogue state tracking

A dialogue can be regarded as a time sequence

{a0, o1, . . . , at−1, ot}, where ai is the system information at

the ith dialogue turn, including the system response, and oi

denotes all information from the user’s speech at the ith turn,

e.g., the output of SLU. At each turn, dialogue state tracking

(DST) is to estimate the probability distribution of the state

given the whole dialogue history up to that turn, also referred
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to as belief state bt(s), or briefly bt,

bt(s) = T (s, b0, a0, o1, . . . , at−1, ot)

= P(s|b0, a0, o1, . . . , at−1, ot), (1)

whereT (·) denotes the tracker and b0 is the initial belief state.

As shown in Eq. (1), the result of DST is affected not only

by the functional form of tracker T (·), but also by the se-

quence {a0, o1, . . . , at−1, ot} and the initial belief state b0. The

initial state is usually assumed to be uniformly distributed. In

the DST context in this paper, the information oi from user’s

speech refers to the output SLU. It is worth noting that this

output is not just a single hypothesis. Instead, it is an N-best

list of semantic hypotheses, which describes the whole hy-

pothesised semantic space.

For an end-to-end spoken dialogue system, a good dia-

logue state tracker should satisfy:

• Accuracy The tracker should be as accurately as pos-

sible to estimate the system state. It has been shown

that the improvement of tracking accuracy can benefit

for the task completion rates in the end-to-end spoken

dialogue system [12].

• Efficiency As shown in Fig. 1, the tracker is only

a small component in the whole system. In order to

achieve real-time conversation, the tracker should com-

pute as fast as possible.

• Generalization In practice, it is hard to collect enough

dialogues for training before a system is employed,

which is often the case whenever a new domain is en-

countered or the current domain is extended. Therefore,

it is important that the tracker can work well in the new

domain or extended domain.

The current state-of-the-art for statistical dialogue manage-

ment is to use the partially observable Markov decision pro-

cess (POMDP) to track the dialogue state and determine the

appropriate system response. In early works of POMDP, be-

lief state is updated using Bayes’ theorem with consideration

of Markov and reasonable independence assumptions. This

leads to the below update formula for bt:

bt(st) = P(st |ot, at−1, bt−1)

= k · P(ot|st, at−1)
∑

st−1∈S
P(st|st−1, at−1)bt−1(st−1), (2)

where k is the normalization constant and at−1 is the system

response at the (t−1)th turn. Eq. (2) is a generative model for

DST. Due to huge number of possible states, approximation

is necessary for DST in real world tasks. State space parti-

tion (hidden information state (HIS)) [3] or further state inde-

pendence assumption (Bayesian network update of dialogue

state (BUDS)) [2] have been used. However, these generative

methods neither accurately nor efficiently track the dialogue

state.

To advance the statistical dialogue management research,

the dialogue state track challenges (DSTCs) are organized

to provide common testbeds for comparing different DST

models. There have been three challenges, each with a differ-

ent task. All challenges consider the tracking of users’ goals

and employ labelled dialogue corpus and simplified dialogue

state representations. The first challenge, DSTC-1, investi-

gates DST evaluation and suggests two primary metrics for

evaluation: accuracy of joint goals of all slots and Brier score

which is the L2 distance between the estimated state distri-

bution from the tracker and the real state distribution (i.e., an

indicator function) [7]. In DSTC-2 [8], the domain changes to

restaurant search with eight slots, which is more complicated

and realistic.

Since transplanting SDS from a domain to another is of

both theoretical and practical interest, DSTC-3 [9] designs

tasks for building trackers for domain extension. Only a small

set of labelled dialogues in a new domain (tourist informa-

tion) are available, and all participants are asked to build a

belief state tracker on the small data set plus the DSTC-2 data

(restaurant domain). The new domain has 13 slots, which in-

clude all slots in DSTC-2 and five new slots. This is a typical

domain extension scenario for testing the evolvement ability

of the trackers. It is worth noting that there are two aspects

to be considered during this process: parser extension and

tracker extension. The below sections will detail algorithms

for both aspects.

3 Evolvable statistical semantic parser

Semantic parser serves as an interface between automatic

speech recognition (ASR) and dialogue state tracking (DST),

which aims at understanding user’s intentions of their current

speech utterances. Typically, state tracking has assumed the

output of a spoken language understanding (SLU) component

in the form of a semantic decoder, which maps the hypotheses

from automatic speech recognition (ASR) to a list of seman-

tic hypotheses [13].

3.1 Dialogue acts

Once the system gets a set of ASR hypotheses with con-

fidence scores, it needs to interpret the meaning of these
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word sequences. For a task-oriented SDS, the subtle and ex-

act meaning is not important. It is only crucial to catch the

user’s goal related to the task. For example, whether the user

says “I want to find a restaurant nearest.” or “Could you show

me the nearest restaurant?”, the intention should be the same.

The user is asking for a nearest restaurant.

Dialogue acts [14] are high-level meaning representation

which can encapsulate a variety of the user’s intentions. Di-

alogue act is a semantic functor consisting of a dialogue act

type and slot-value pair, in form of

actType(slot = value),

where actType can be “inform” (for statement), “request” (for

asking), etc., slot refers to one attribute that helps represent

the user’s intention and value is the corresponding value.

Note that the semantic of one utterance may be made up

of multiple dialogue acts. For example, “request(name) in-

form(food=Chinese)” refers to asking for the name of a Chi-

nese restaurant.

3.2 Statistical semantic parsers

The task of spoken language understanding differs from usual

semantic parsing in natural language processing in the sense

that the input is erroneous ASR hypothesis and sometimes

multiple hypotheses in the form of N-best list or lattices. The

difficulty here is to achieve robustness to ASR errors.

There are a variety of approaches available for semantic

parsing. Context-free grammar, or rule based method, is an

example of hand-crafted approaches, which can be imple-

mented easily but quite sensitive to ASR errors. To alleviate

this issue, data-driven approaches are developed by learning

the semantic representation from data statistically. In these

methods, semantic parsing is regarded as a sequence labelling

problem with aligned training data in which each word is tied

with a semantic tag sequentially. Hidden vector state (HVS)

model learns a probabilistic push-down automaton [15]. Ma-

chine translation techniques [16] consider semantic parsing

as a task of translation from word sequence to semantic la-

belled sequence. Zettlemoyer & Collins present a grammar

induction method that can learn a probabilistic combinatory

categorial grammar (PCCG) from utterance-level annotations

[17]. Conditional random fields (CRF) [18] shows good per-

formance in semantic labelling. Weighted Finite State Trans-

ducers [19] have also been used. Recently, deep learning

techniques are used in SLU, such as recurrent neural net-

works (RNN) [20], long short-term memory (LSTM) neural

networks [21] and recursive neural networks (RecNNs) [22].

Different from the above methods which consider semantic

parsing as a sequence labelling problem, the semantic tuple

classifiers approach [23] builds classifiers on the whole sen-

tence. This is critical for real world SLU, since it is usually

hard to achieve word-semantics slot alignment due to ASR

errors. In this method, a binary classifier is trained for each

actType-slot and slot-value pair, and predicts the presence of

this pair in the utterance. Similarly, a multi-class classifier is

estimated for all the dialogue act types. Finally, all outputs

of these classifiers are combined to be the predicted dialogue

acts.

Beyond ASR top-hypothesis, N-best list of ASR hypothe-

ses provides more words and information, which will im-

prove the performance of semantic parsing significantly.

Meanwhile, in a conversational dialogue system, not only the

output of ASR, but also the history of dialogue can be used

in semantic parsing [24].

3.3 Evolvable parser in dialogue domain extension

Statistical semantic parser trained on sufficient in-domain

data has shown to be robust to errors of automatic speech

recognition (ASR) [23–25], especially in end-to-end spoken

dialogue systems.

In order to build practical systems, semantic parser should

have portability when the domain of a dialogue system is ex-

tended. However, when the dialogue domain is changed or

expanded, the performance of a semantic parser is usually

significantly degraded as a result of the introduction of new

semantic slots, values and unknown speech pattern (or ASR

hypothesis pattern). Thus, the ability of SLU to cope well

with the expanded domains and limited training data is very

attractive to the deployment of commercial dialogue systems.

We proposed a practical semantic parser enhancement

[26], which shows good scalability in dialogue domain ex-

tending with little labelled example data. It employs auto-

matic pseudo-data generation for parser re-training and do-

main independent rescoring to further improve parsing per-

formance.

3.3.1 ASR hypotheses simulation and parser re-training

ASR hypotheses simulation used as automatic pseudo-data

generation helps to re-train semantic parsers for the ex-

tended dialogue domain. ASR hypotheses simulation is im-

plemented on word level to generate additional training data

adapted from the original domain to the extended domain.

These new sentences are generated for the new slots and val-

ues, which contain new sentence patterns and new text con-
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texts of the values, as shown in Fig. 2.

Fig. 2 A general comparison of different dialogue domains (A-domain and
B-domain refer to two different dialogue domains)

In general, the semantic data of different dialogue domains

can be classified as:

• Domain independent data samples independent of

any specific domain, e.g., users say hello or thank you.

• Domain transferable data samples appearing in both

the original and the extended domain.

• Non-transferable & domain constrained data sam-

ples specific for one domain, which can not be trans-

ferred to another domain.

ASR hypotheses simulation focuses on generation of the

third part of data samples (non-transferable & domain con-

strained). With these transferred and generated data, the se-

mantic parser for the extended domain is easy to be built. The

main idea of data generation is based on combining old sen-

tence patterns with new slot-values, and new sentence pat-

terns with old slot-values. Sentence pattern refers to a sen-

tence structure with slot-values replaced with some special

label, for example, the pattern of “I need moderately priced

Chinese food” is simply “I need [pricerange] priced [food]

food”.

In Ref. [26], ASR hypotheses simulation shows a signifi-

cant improvement in contrast to the simple approach without

data generation in DSTC-3 where F-score of dialogue act in-

creases from 0.808 to 0.833.

3.3.2 Domain-independent SLU rescoring

In addition to parser re-training, we proposed a new view to

make use of system act for dialogue domain extension. Sys-

tem act is the semantics that the machine feeds back to the

user and has some relationship with what the user would say

next. Henderson et al. trained semantic tuple classifiers by

concatenating the text feature and the last system act fea-

ture [24]. But in the extended dialogue domain, it is more

convenient to use the system act features independent of the

dialogue domain. Hence, the last system act features indepen-

dent of dialogue domain are exploited to train a SLU rescor-

ing system in the original domain, and applied to the semantic

parser enhancement in the extended domain.

The proposed rescoring approach is to train a classifier for

each semantic item, like actType, actType-slot pair and slot-

value pair. The domain-independent features used in rescor-

ing are listed below:

• SLU score the output probability of the original se-

mantic parser, e.g., semantic tuple classifiers.

• System act type an indication feature for each dia-

logue act type whether it exists in the last system act.

• Acttype-slot a feature giving the indication of whether

each (acttype, slot) pair exists in the last system act.

• Slot-value a feature giving the indication of whether

each (slot, value) pair exists in the last system act.

Moreover, more domain-independent features can be ex-

tracted and exploited. In Ref. [26], it is shown that SLU

rescoring yields slight improvements in addition to the ASR

hypotheses simulation method.

4 Evolvable tracker

Given multiple SLU hypotheses with confidence scores, the

aim of a tracker is to estimate the distribution of user’s goal.

Since tracker needs to take into account the interaction his-

tory and the output is a distribution, the tracking task is not a

typical classification tasks. In general, there are two types of

approaches for dialogue state tracking — statistical approach

and rule-based approach.

4.1 Statistical tracker

Before the DSTCs, most statistical DST approaches are

Bayesian generative models. Although they are mathemati-

cally sound, it is hard to incorporate rich features for DST,

and sometimes they are intractable [27]. Hence, statistical

discriminative models, such as maximum entropy model

(MaxEnt) [27, 28], conditional random field (CRF) [29, 30],

deep neural networks (DNN) [28, 31], recurrent neural net-
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works (RNN) [9, 32] and decision forest [33], have been

used as the statistical DST models and achieved great suc-

cess since DSTC-1. With different assumptions on slot and

value independence, these approaches fall into four main

categories: binary classification model, multi-classification

model, structured discriminative model and labelling model.

• Binary classification models Here all slots are as-

sumed to be independent of each other, leading to an

efficient state factorization:

b(s1 = v1, . . . , sn = vn) =
∏

j

b(s j = v j). (3)

In addition, for a slot, all candidate values which have

not been observed up to the current turn are clustered to-

gether as a special value “None". This significantly re-

duces the computational cost. With these assumptions,

the joint goal can be easily obtained by calculating the

belief b(s = v) for each slot s and candidate value v.

This can be converted into a binary classification prob-

lem of determining whether s = v is true or false. Vari-

ous models have been used within this framework, such

as MaxEnt [27, 28] and DNN [28, 31].

• Multi-classification models In the binary classifica-

tion models, the belief of every candidate value v is

evaluated separately, which may degrade the perfor-

mance. To address this issue, multi-classifier is used to

track the belief of all values simultaneously. Same as

the binary classification models, different slots are as-

sumed to be independent of each other, thus the belief

state of each slot can be updated separately, and the be-

lief of joint goal is calculated by Eq. (3). A typical ex-

ample is RNN [9, 32].

• Structured discriminative models In both binary and

multi-classification models, slots are assumed to be in-

dependent of each other. Considering relational con-

straints may result in potential improvement of the DST

performance. Structured discriminative models are pro-

posed to capture the relationship between slots at a

particular turn. A typical example is CRF with manu-

ally designed factored graph [29]. Another example is a

web-style ranking model (decision forest model) [33],

which can automatically build conjunctions of raw fea-

tures to track the belief state of joint slots.

• Labelling models Although structured discriminative

models utilize the relational constraints between dif-

ferent slots, they only focus on information of a sin-

gle turn. In DSTC-2, a sequential labelling model is

proposed to capture the relationship between multiple

turns [30]. In this approach, the output of the model in-

cludes labels of the dialogue state from multiple turns.

To model the temporal relationship, a linear-chain CRF

is used [30].

It is worth noting that features play an important role here.

In the DSTCs, the available information includes speech

recognition and semantic parsing results as well as the sys-

tem response history. Since N-best results are also available,

various features, such as confidence scores, ranks, and statis-

tics of confidence scores, are commonly used as features. For

the speech recognition results, the most common feature is

the n-gram feature weighted by confidence scores [32]. The

system dialogue acts can provide useful information for state

estimation [28, 32]. Besides these features, the turn-id of the

dialogue, whether the user has interrupted the system etc., can

also be used as features [27, 28, 31]. The main advantage of

statistical discriminative model is the ability of incorporating

various forms of features, and the performance is very good

with sufficient training data.

4.2 Rule-based tracker

Since the DST problem is raised out of the statistical di-

alogue management framework, statistical approaches have

been the natural focus. However, statistical approaches has

also shown large variation in performance and poor generali-

sation ability due to the lack of data. There has been also an

attempt to employ rule-based methods due to its simplicity,

efficiency, portability and interpretability. For example, the

standard POMDP belief update can be seen as a rule-based

model, when all parameters are set according to prior knowl-

edge without data-driven estimation [34]. During DSTCs, a

couple of more interesting rule-based models [35] have also

been proposed, one of which is explained in detail in the

CMBP section. The advantage of rule-based model is being

domain independent, and hence no evolvement issue to be

considered.

4.3 Mixed trackers

Although statistical models can improve with more data and

achieve good performance, it is relatively hard to use it for

domain extension due to lack of data. Rule-based approaches

are not bothered by the domain change issue, however, the

performance of rule-based model is usually poor and they

lack the ability of evolvement with data.

To address these limitations, approaches bridging rule-
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based and statistical models are proposed: constrained

Markov Bayesian polynomial (CMBP) and recurrent polyno-

mial network (RPN). They have the advantages of both rule-

based models and statistical models and will be reviewed in

detail in the next section. The comparison of different DST

models is shown in Table 1.

Table 1 Comparison of different models

Type Tracker Accuracy Efficiency Generalization

Rule Rule-based ×
√ √

Statistical Generative × × ×
Discriminative

√ √
×

Mixed CMBP/RPN
√ √ √

Note: ‘
√

’ means that most of trackers have the corresponding merit. ‘×’
means that most of trackers do not have the corresponding merit

5 Bridging rule-based and statistical ap-
proaches

Taken into consideration of benefits and weaknesses of statis-

tical models and rule-based models, mixed trackers are able

to transcend their limitations by combining the advantages

of rule-based models and statistical models. This makes the

mixed tracker particularly useful for evolvable DST.

Broadly, there are two ways to bridge rule-based mod-

els and statistical models: one is to find a good rule us-

ing prior knowledge and data-driven approaches, while the

other starts from statistical models and takes advantage of

prior knowledge. Constrained Markov Bayesian polynomial

(CMBP) takes the first way [10, 36], while recurrent polyno-

mial network (RPN) takes the second way [11].

5.1 Constrained Markov Bayesian polynomial

5.1.1 Motivation

In DSTC-1, a simple rule-based model achieving good results

was proposed by Wang et al. [35]. In the model, for slot s and

value v, the belief of “the value of slot s being v in the tth

turn”, denoted as bt(v), is calculated as follows:

bt(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − (1 − bt−1(v))(1 − P+t (v)))·
(1 − P−t (v)), i f v � “None”;

1 −
∑

v′�“None”

bt(v′), otherwise,

(4)

where P+t (v) and P−t (v) are used to denote the sum of SLU

confidence scores that user informs or affirms v, and sum of

SLU confidence scores that user negates or denies v, respec-

tively.

Rule-based models [34,35], and Bayesian generative mod-

els [3] are all based on Bayes’ theorem. Since Bayes’ theorem

is essentially summation and multiplication of probabilities,

they can be rewritten in a general polynomial form, referred

to as Markov Bayesian polynomial (MBP) [10, 36]:

bt+1(s) = P(bt, qt), (5)

where bt+1(s) is the belief state of s at the tth turn, qt is the

probability features about current user acts and machine acts,

and P(·) is a multivariate polynomial function

P(x1, x2, . . . , xD) =
∑

0�k1�···�kn�D

gk1,k2,...,kn

∏

1�i�n

xki (6)

where D is the number of input variables, x0 = 1, n called

order of MBP is the order of the polynomial. The coefficient

gk1,k2,...,kn is the parameter of MBP.

CMBP and RPN, which both bridge rule-based and statis-

tical approaches, are based on MBP.

5.1.2 Definition of CMBP

MBP gives a common form for rule-based and statistical gen-

erative Bayesian models. CMBP we proposed in the work of

[10, 36] is a data-driven approach using constraints and prior

knowledge to find a good model of this common form.

Similar to work proposed in Ref. [35], slot and value are

assumed to be independent, though CMBP is not limited to

the assumptions.

More probabilistic features are used in CMBP as below to

allow CMBP to model complex cases:

• P+t (v): sum of scores of SLU hypotheses informing or

affirming value v at turn t;

• P−t (v): sum of scores of SLU hypotheses denying or

negating value v at turn t;

• P̃+t (v) =
∑

v′�{v,None} P
+
t (v′);

• P̃−t (v) =
∑

v′�{v,None} P
−
t (v′);

• bt(v): belief of “the value being v at turn t”;

• br
t : probability of the value being “None” (the value not

mentioned) at turn t.

With the above probabilistic features, a CMBP model is

defined as

bt+1(v) = P
(
P+t+1(v), P−t+1(v), P̃+t+1(v), P̃−t+1(v), br

t , bt(v)
)

s.t. constraints. (7)

where P(·) is a multivariate polynomial function defined by

Eq. (6).

CMBP uses intuition or prior knowledge by constraints in

Eq. (7). They can be classified into three categories.
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• Probabilistic constraints are used to restrict proba-

bilistic features by definition, which can be directly

written as linear equalities or inequalities. For example,

according to the definition of br
t ,

br
t = 1 −

∑

v′�None

bt(v′). (8)

• Intuition constraints encode intuitive prior knowledge

(i.e., rules). For example, the rule “the belief should be

unchanged or negatively correlated with the negative

scores from SLU" is represented by

∂P(P+t+1(v), P−t+1(v), P̃+t+1(v), P̃−t+1(v), br
t , bt(v))

∂P−t+1(v)
� 0.

(9)

• Regularization constraints attempt to regularise the

solution to prevent overfitting in the data-driven rule

generation. For example, the coefficients of P(·) may

be limited to be in [−1, 1].

To build an easily solvable model, these constraints in

mathematical forms should further be relaxed to linear forms

to get a constrained optimisation problem.

For example, Eq. (9) can be approximated by the linear

constraint shown below

⎧⎪⎪⎨⎪⎪⎩P(a) � P(b)

∣∣∣∣∣∣∣
a, b ∈ χ, ai ∈ T5

a2 = b2 + 0.1, ai = bi ∀i � 2

⎫⎪⎪⎬⎪⎪⎭ , (10)

where a and b are the 6-dimensional input vectors of

Eq. (7), χ denotes all possible input vectors and T5 =

{0, 0.2, 0.4, 0.6, 0.8, 1} is quantised interval of [0, 1].

5.1.3 Data-driven rule generation for CMBP

Once rule-based model is formulated as CMBP, good rules

are defined by constraints that are indicated by prior knowl-

edge. Data-driven approach is further used to refine CMBP.

By utilizing data, CMBP is an evolvable tracker which over-

comes the inferior performance weakness of normal rule-

based model. The model complexity is indicated by the order

of CMBP. Order n = 3 is used in Refs. [10, 36] which yields

state-of-the-art results. Then the Eq. (6) is

P(x1, x2, . . . , x6) =
∑

0�k1�k2�k3�6

gk1,k2,k3

∏

1�i�3

xki , (11)

where x0 = 1 and g ∈ Z are the CMBP parameters.

Aiming at improving the overall goal tracking accuracy of

training data, the data-driven CMBP can be formulated as the

following optimization problem:

maxL (w) =
S∑

s=1

Acc
(
P(x(s)

1 , x
(s)
2 , . . . , x

(s)
6 ; g)

)

s.t. approximated linear constraints. (12)

where g = {g000, g001, . . . , g666}, S is the total number of turns

of the training samples, Acc(·) is the accuracy of state track-

ing.

The steps of finding the optimal CMBP are shown below

given the formulated optimisation problem (Eq. (12)):

1) A superset of feasible CMBPs satisfying the approxi-

mated linear constraints is generated. This generation

can be done by an algorithm of integer linear program-

ming with objective function being dummy. Existing

solver, such as SCIP [37], can be used for this purpose.

The size of the superset can be neither too small, nor

too big by setting additional constraints.

2) Each feasible solution from step 1 is enumerated and

the correspondingL (g) is calculated. It is possible that

some bt(v) or br
t are out of [0, 1] because of constraints

approximated. To get legal track output, bt(v) that is less

than 0 is set to 0, and bt(v) that is larger than 1 is set to

1. br
t is re-calculated with legal bt(v).

3) The best CMBP is found by the one with highest accu-

racy. Regularization terms and other additional selec-

tion criteria, can also be used here.

The optimal integer-coefficient CMBP can be found with the

above process. With more training data, the optimal CMBP

can be further refined.

Bayesian probability operation only involves integer coef-

ficient. Although CMBP is inspired by Bayes’ theorem orig-

inally, CMBP as a statistical approach can be extended to

real coefficient. An integer solution is obtained first, then hill

climbing is used to extend the integer-coefficient solution to

real-coefficient solution [10].

CMBP bridges rule-based approaches and statistical ap-

proaches effectively. The intuition prior knowledge is en-

coded by constraints which can be set manually, while data-

driven optimisation of model parameters is possible in opti-

mising general Bayesian polynomial representation.

5.2 Recurrent polynomial network

As another approach to bridge rule-based and statistical mod-

els, the basic idea of RPN [11] is to enable a kind of statistical

model to utilize prior knowledge or intuition by using the pa-

rameters of rule-based models to initialize the parameters of
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statistical models. By taking into account of prior knowledge,

RPN can achieve good performances even if training data is

insufficient, which are shown in experiments.

An RPN, as a computational network, contains multiple

edges and loops. Like an RNN, each node at time t in RPN

takes values from nodes at time t and nodes at time t − 1.

Formally, there are two types of edges, type − 1 and type − 2

edges. A type − 1 edge indicates that a node at time t takes

value from a node at time t − 1, while a node at time t takes

the value of a value at time t when they are connected by a

type − 2 edge.

Let Ix be the set of nodes which are connected to node x

using type − 1 edges, and Îx be the set of nodes which are

connected to node x using type − 2 edges. Similarly, let wxy

and ŵxy denote the weight of type − 1 edge −→yx and type − 2

edge −→yx respectively.

Generally, two types of nodes are used in RPN, input nodes

and computation nodes. Input nodes are used to input fea-

tures at each time. Computation nodes are further classified

into three categories: sum node, product node and activation

node. For node x at time t, the evaluation of nodes differ ac-

cording to their types. Let u(t)
x denote the value of node x at

time t.

• Sum node For a sum node x at time t, its value is the

weighted sum of nodes linked to it.

u(t)
x =
∑

y∈Ix

wx,yu(t−1)
y +

∑

y∈Îx

ŵx,yu(t)
y . (13)

• Product node For a product node x at time t, its value

is the product of its inputs. However, there may be some

nodes that are linked to node x multiple times. Then

these values should be multiplied to u(t)
x multiple times.

Let Mxy and M̂xy denote the multiplicity of the type − 1

and type− 2 edge −→yx respectively. Then u(t)
x is evaluated

by

u(t)
x =
∏

y∈Ix

u(t−1)
y

Mx,y
∏

y∈Îx

u(t)
y

M̂x,y
. (14)

• Activation node Activation nodes only take one input

and only has one input edge of type-2, i.e |Îx| = 1 and

Ix = ∅. The value of an activation node x is calculated

as

u(t)
x = so f tclip

(
u(t)
jx

)
, (15)

where jx denotes the input node of node x. i.e. Îx = { jx}.
Softclip will be detailed later.

Note that Mx,y and M̂x,y are indicated by the structure of

RPN. And parameters of RPN only include w, ŵ. Each com-

putation node can be regarded as an output node.

5.2.1 Basic structure for DST

With the sum nodes and product nodes introduced above, a

polynomial can be easily computed. Because CMBP uses a

homogeneous polynomial, it can be computed by a simple

layered RPN. An RPN expressing a 3-order CMBP is shown

in Fig. 3.

Generally, there is a product layer and a sum layer besides

the input layer, which corresponds to monomials and polyno-

mial in CMBP. Specifically, Let (l, i) denote the index of ith

node in the lth layer.

• First layer / Input layer Features used in CMBP at

turn t are used to assign input nodes’ value.

−u(t)
(1,0) = bt−1;

−u(t)
(1,1) = P+t ;

−u(t)
(1,2) = P−t ;

−u(t)
(1,3) = P̃+t ;

−u(t)
(1,4) = P̃−t ;

−u(t)
(1,5) = 1.

Fig. 3 RPN for DST.
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Since preliminary experiments show the performance

of CMBP would not degrade without feature br
t−1, to

make the structure clearer and more compact, br
t−1 is

not used for RPN and CMBP in our work [11].

• Second layer Each monomial in CMBP is a value of

some product node in the second layer. Since the order

of CMBP is 3, every monomial in CMBP is the prod-

uct of three repeatable features. Similarly, the value of

every product node in second layer is the product of val-

ues of three repeatable nodes in the first layer. A prod-

uct node x = (2, i) is created by exhaustively enumer-

ating every triple (k1, k2, k3)(0 � k1 � k2 � k3 � 5).

Nodes (1, k1), (1, k2), (1, k3) are linked to node x. And

thus u(t)
x = u(t)

(1,k1)u
(t)
(1,k2)u

(t)
(1,k3). Different nodes in the sec-

ond layer are created by distinct triples. To simplify the

notation, a bijection to map nodes to their correspond-

ing monomials is defined as:

F : {x|x is the index of a node in the second layer} →
{(k1, k2, k3) | 0 � k1 � k2 � k3 � 5}, (16)

F (x) = (k1, k2, k3)⇐⇒ u(t)
2,i = u(t)

1,k1
u(t)

1,k2
u(t)

1,k3
. (17)

• Third layer / Output layer The value of sum node

x = (3, 0) in the third layer is the value of CMBP, i.e.,

bt. Every product nodes in the second layer are linked

to it. Therefore, its value is a weighted sum of values

of product node u(t)
2,i where the weights correspond to

gk1,k2,k3 in Eq. (11).

5.2.2 Activation function

The values of product nodes and sum nodes are not guar-

anteed to lie in certain interval without constraints of input

values and weights.

However, a belief is a possibility value which should lie in

[0, 1]. Then the output value in RPN should be in [0, 1], too.

Besides, experiments show that if weights are not properly

set in RPN, bt may grow to a very large number. Activation

functions are introduced to map the output value to a legal

belief value in [0, 1].

With several functions investigated [11], an activation

function so f tclip(·), which is a combination of logistic func-

tion and clip function, is introduced. Let ε denote a small

value such as 0.01, δ denote the offset of sigmoid function

s.t. sigmoid (ε − 0.5 + δ) = ε, where

sigmoid(x) =
1

1 + e−x
. (18)

Formally, the softclip function is defined as

so f tclip(x) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sigmoid (x − 0.5 + δ) , if x � ε;

x, if ε < x < 1 − ε;
sigmoid (x − 0.5 − δ) , if x � 1 − ε.

(19)

so f tclip : R → (0, 1), which is linear on [ε, 1 − ε], is a

non-decreasing and continuous function.

5.2.3 Complex structure

Since RPN is a statistical model, it is easy to add new features

and use complex structures. More importantly, by letting part

of RPN expressing a CMBP, RPN can always achieve the per-

formance of CMBP, no matter what new features and com-

plex structure are implemented in RPN. Both new features

and complex structure are explored in the work of [11].

When adding new features, new input nodes and product

nodes should be added, which correspond to new features

and new monomials. For slot s, value v at turn t, six features

f0 ∼ f5 used in previous structure are bt−1(v), P+t (v), P−t (v),

P̃+t (v), P̃−t (v) and 1, respectively. Four new features have been

investigated [11]. f6 and f7 are features of system acts at the

last turn:

• f6 � canthelp(s, t, v) =1 if the constraints including

s = v make the system unable to find a venue, other-

wise 0.

• f7 � select(s, t, v) =1 if the user is asked to choose a

value for slot s with option v, otherwise 0.

f8 and f9 are features of user acts at the current turn:

• f8 � in f orm(s, t, v) = 1 if user informs slot s is v in

some SLU hypotheses, otherwise 0.

• f9 � deny(s, t, v) =1 if user denies slot s is v in some

SLU hypotheses, otherwise 0.

To characterize some properties across turns, a new sum

node x = (3, 1) in the third layer is introduced. This node is

also used as an input in the next time. The content of the node

is unknown, but it is the only value which is not supervised by

the label and may help reduce the effect of inaccurate label.

The structure of the RPN with new activation nodes, one

new sum node and four new features is shown in Fig. 4.

5.2.4 RPN initialization

By using CMBP to initialize RPN, it takes advantage of prior

knowledge or constraints effectively. More specifically, given
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Fig. 4 RPN with new features and more complex structure for DST

a CMBP, part of RPN can be made identical to CMBP.

CMBP only utilizes f0 ∼ f5. In structure shown in Fig. 4, if

a product node is a monomial in CMBP, its weights should be

set according to coefficient of this monomial in CMBP. For-

mally, for product node y, F (y) = (k1, k2, k3) is defined in Eq.

(16). If 0 � k1 � k2 � k3 � 5 is satisfied, weights ŵxy should

be initialized as gk1,k2,k3 which is the coefficient of fk1 fk2 fk3 in

CMBP. Other weights should be initialized as 0.

wx,y =

⎧⎪⎪⎨⎪⎪⎩
gk1,k2,k3 , if x = (2, 0) and F (x) = (k1, k2, k3);

0, otherwise.
(20)

For RPN of other structures, prior knowledge and constraints

in CMBP are used to find a suboptimum point in RPN’s pa-

rameter space as the initial parameters.

5.3 Limitation of CMBP and RPN

Although the CMBP and the RPN approaches can effectively

bridge rule-based and data-driven models, they both bear the

assumption of goal and slot independence in this paper. It

is possible to extend both CMBP and RPN to model multi-

ple goals and slots simultaneously. However, straightforward

joint goal/slot modelling will significantly increase the com-

plexity of the models. Compared to state-of-the-art statistical

tracker, such as RNN [32], it is not trivial to simultaneously

model multiple goals for CMBP and RPN. This issue is to be

addressed in the future.

6 Experiment

6.1 Evolvable SLU

The experiments of evolvable SLU in case of dialogue do-

main extension are conducted in DSTC-2/3 task, where

DSTC-2 is the original domain (i.e., finding restaurant) with

total 3235 dialogues and DSTC-3 is the extended domain

(i.e., tourist information) with only 11 example dialogues

available. In these experiments, the DSTC-3 evaluation cor-

pus with 2264 dialogues was split into a train and test set

again for method comparison. These datasets are:

• Seed: 11 labelled example dialogues.

• Real-train: Seed and 1144 dialogues of the DSTC-3.

• Real-test: other 1120 dialogues used for evaluation.

In Table 2, Real-train is implemented on the Real-train

training set, which is an ideal in-domain parser with the best

F-score and ICE1) of semantic dialogue act. Seed-train is car-

ried out in all DSTC-2 data and Seed dataset without data

generation. It gets the worst F-score and ICE. In contrast,

Simul-train exploits ASR hypotheses simulation to generate

more data of DSTC-3 than Seed-train, as well as higher F-

score and lower ICE. SLU rescoring further improves Simul-

train slightly, although the gain is not significant.

Table 2 Performances of different SLU parsers in Real-test

method Prec. Recall F-score ICE

Real-train 0.914 0.818 0.863 1.060

Seed-train 0.858 0.764 0.808 1.734

Simul-train 0.870 0.799 0.833 1.483

+ rescore 0.871 0.801 0.834 1.483

6.2 Evolvable tracker

Evolvable mixed trackers taking advantage of prior knowl-

edge and data-driven methods demonstrate their effectiveness

and good performance under all situations in this section.

1) Item cross entropy (ICE) between the N-best semantic hypotheses and the semantic label, assesses the overall quality of the semantic items distribution [24].
The lower, the better
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Four trackers are investigated, including a baseline system

using the HWU rule-based model [38], a statistical model us-

ing Max Entropy (MaxEnt) [28] and two mixed-type trackers:

CMBP [10, 36] and RPN [11].

6.2.1 Effect of training data amount

Large amount of training data is crucial for building statistical

trackers. However, as a matter of fact, cases with insufficient

training data frequently occur because it is hard to get data

and label them.

In this section, performances of different trackers with

different amount of training data are investigated. Both the

DSTC-3 sample training data (10 dialogues) and the DSTC-3

development data are used to train RPN and MaxEnt. When

using only part of the data in these two dataset, the tracker’s

accuracy drop. The results are show in shown in Fig. 5, with

X-axis being the fraction of data used, Y-axis being trackers’

accuracy.

Fig. 5 Tracking with different amount of training data

It can be seen that RPN outperforms both rule-based (base-

line HWU rule) and statistical model (MaxEnt) with all kinds

of data amounts. This shows the advantage of incorporating

prior knowledge when data is small, and the ability of evolve-

ment when data amount is increasing.

6.2.2 SLU robustness

In an end-to-end system, performances of training SLU and

testing SLU are often different, because it is very hard to get a

reliable SLU applicable to all utterance patterns with limited

training data and extended domain.

However, SLU confidence scores are usually used as di-

rect inputs for DST and affect performance of state track-

ing greatly. The organiser-provided live SLU confidence have

been shown to be poor [26, 28]. So most of the good track-

ers reported in DSTC-2 and DSTC-3 use their own SLU

[28,32,33,36,39,40]. Accuracy of Kadlec et al. [40]’s tracker

increases 7.6% when organiser-provided SLU is replaced by

their own refined SLU. Hence, mismatched SLU is a main

problem in dialogue state tracking.

Four types of SLUs with different levels of performance

are used to investigate this effect:

• Original: the rule-based parser provided by the DSTC-3

organizer.

• Train: a statistical parser trained with k percent error

simulated data. SLU results are given by parsing on

ASR-hypotheses.

• Combined: averaging the SLU results of the Original

and the Train SLU.

• Transcript: similar to the Train type parser, the parser

is trained with k percent error simulated data. However,

to get an oracle setting for comparison, SLU results are

parsed on transcription instead of ASR hypothesis.

The six SLUs used for comparison are shown in Table 3.

Table 3 Performance of the six different SLUs

SLU type ASR error/% ICE Fscore Precision Recall

Original 0 1.719 0.824 0.852 0.797

25 1.441 0.836 0.863 0.811
Train

50 1.425 0.837 0.862 0.813

25 1.241 0.834 0.870 0.801
Combined

50 1.235 0.835 0.869 0.803

Transcript 50 0.893 0.915 0.956 0.877

To simulate the condition with gap between training SLU

and testing SLU, in experiments shown in Fig. 6, the SLU for

all trackers is fixed during training and the above six SLUs

are used for testing respectively. In Fig. 6, the X-axis is the

SLU ICE (the lower the better), and the Y-axis is the tracking

accuracy on DSTC3-test. RPN achieves best results with all

SLUs, which demonstrate the power of evolvable trackers.

Fig. 6 Tracking with mismatched SLU

Trackers with consistent SLUs are also tested. In Fig. 7,

trackers are trained and tested on the SLU output from the

same parser. RPN also outperforms all other approaches. This

shows that the best mixed-type tracker is robust to SLUs.
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Fig. 7 Tracking with matched SLU

6.2.3 Comparison between state-of-the-art trackers

In this section, the mixed-type trackers with the enhanced se-

mantic parser are compared to state-of-the-art trackers on the

DSTC-3 challenge task. Note that, in DSTC-3, only ten di-

alogues of the new domain are provided for training. Both

rule-based and mixed-type trackers do not need to use the ten

training dialogues, since they can both be regarded as domain

independent rules. On the other hand, mixed-type trackers are

refined using the data of DSTC-2, i.e., another related domain

with sufficient data.

Firstly, the performances of rule-based, statistical and

mixed-type trackers using similar feature set (six features in-

troduced before), i.e., the performances of CMBP, RPN, two

rule-based trackers and two statistical trackers are compared

in Table 4. Altogether, two rule-based trackers and two sta-

tistical trackers were built for performance comparison. Both

accuracy and Brier score (L2) are employed as evaluation

metrics.

Table 4 Performance comparison among RPN, CMBP and other models

dstc2eval dstc3eval
Type System

Acc L2 Acc L2

MaxConf 0.668 0.647 0.548 0.861
Rule

HWU 0.720 0.445 0.594 0.570

DNN 0.719 0.469 0.628 0.556
Statistical

MaxEnt 0.710 0.431 0.607 0.563

CMBP 0.756 0.370 0.628 0.546
Mixed

RPN 0.758 0.370 0.644 0.542

Note that the performance of CMBP in the table is the ini-

tialisation parameter for RPN. It can be seen that the mixed-

type trackers outperform both rule-based and statistical track-

ers with the same feature set. It may be argued that the per-

formance of the statistical models with the limited feature set

is not the state-of-the-art. To address this issue, we compare

the mixed-type trackers to the best trackers in DSTCs.

Table 5 shows the results of DSTC-2, where sufficient

training data is available. It can be observed that, although

statistical model performs best in this case, RPN and CMBP’s

performance is still competitive compared to the best submit-

ted trackers in DSTC-2. Note that Baseline* is the best one

from the four baselines in DSTC-2 and in DSTC-3, Williams

[33]’s system employed batch ASR hypothesis (i.e., off-line

ASR re-decoded results) and cannot be used in the normal on-

line model in practice. Hence, Henderson et al. [32] achieve

the the best practical result. It can be seen that CMBP and

RPN rank only second to the best practical tracker. Consider-

ing that only probabilistic features and the very limited added

features are used, they are quite competitive in performance

and can operate very efficiently.

Table 5 Performance comparison among trackers of DSTC-2 on dstc2eval

System Approach Rank Acc L2

Baseline* Rule 5 0.719 0.464

Williams (2014) [33] LambdaMART 1 0.784 0.735

Henderson et al. (2014d) [32] RNN 2 0.768 0.346

Sun et al. (2014b) [28] DNN 3 0.750 0.416

Yu et al. (2015) [10] Real CMBP 2.5 0.762 0.436

RPN RPN 2.5 0.756 0.372

The above models are using the same feature set. It is also

of interest to compare the evolvable mixed-type trackers to

the state-of-the-art submissions in DSTC-3.

Table 6 Performance comparison among trackers of DSTC-3 on dstc3eval

System Approach Rank Acc L2

Baseline* Rule 6 0.575 0.691

Henderson et al. [39] RNN 1 0.646 0.538

Kadlec et al. [40] Rule 2 0.630 0.627

Sun et al. [36] Int CMBP 3 0.610 0.556

Yu et al. [10] Real CMBP 1.5 0.634 0.579

RPN RPN 0.5 0.650 0.538

It can be observed from Table 6, state-of-the-art perfor-

mance on DSTC-3 is achieved by CMBP and RPN trained on

DSTC-2 without modifying tracking method2). RPN with en-

hanced semantic parser outperforms all the submitted track-

ers in DSTC-3 including the best submission (RNN system).

This effectively demonstrates the evolution ability of mixed-

type parsers.

7 Conclusions

This paper reviews dialogue state tracking for domain ex-

tension. We have reviewed evolvable methods for dialogue

state tracking from two aspects: parser and tracker. Two novel

trackers, CMBP and RPN, which bridge rule-based and sta-

2) The parser is enhanced for DSTC-3 using the approach in Section 3 [26]
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tistical approaches, are reviewed in detail. The experiments

show that these methods can achieve state-of-the-art perfor-

mance with sufficient data, and are particularly robust and

effective for domain extension.
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