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Abstract

Recently, constrained Markov Bayesian
polynomial (CMBP) has been proposed
as a data-driven rule-based model for di-
alog state tracking (DST). CMBP is an ap-
proach to bridge rule-based models and
statistical models. Recurrent Polyno-
mial Network (RPN) is a recent statisti-
cal framework taking advantages of rule-
based models and can achieve state-of-
the-art performance on the data corpora
of DSTC-3, outperforming all submitted
trackers in DSTC-3 including RNN. It
is widely acknowledged that SLU’s re-
liability influences tracker’s performance
greatly, especially in cases where the train-
ing SLU is poorly matched to the testing
SLU. In this paper, this effect is analyzed
in detail for RPN. Experiments show that
RPN’s tracking result is consistently the
best compared to rule-based and statistical
models investigated on different SLUs in-
cluding mismatched ones and demonstrate
RPN’s is very robust to mismatched se-
mantic parsers.

1 Introduction

Dialogue management is the core of a spoken di-
alogue system. As a dialogue progresses, dia-
logue management usually accomplishes two mis-
sions. One mission is called dialogue state track-
ing (DST), which is a process to estimate the dis-
tribution of the dialogue states. Another mission is
to choose semantics-level machine dialogue acts
to direct the dialogue given the information of
the dialogue state, referred to as dialogue decision
making. Due to unpredictable user behaviours, in-
evitable automatic speech recognition (ASR) and
spoken language understanding (SLU) errors, dia-
logue state tracking and decision making are dif-
ficult (Williams and Young, 2007). Consequently,

much research has been devoted to statistical di-
alogue management. In previous studies, dia-
logue state tracking and decision making are usu-
ally investigated together. In recent years, to ad-
vance the research of statistical dialogue manage-
ment, the DST problem is raised out of the sta-
tistical dialogue management framework so that
a bunch of models can be investigated for DST.
Moreover, shared research tasks like the Dialog
State Tracking Challenge (DSTC) (Williams et al.,
2013; Henderson et al., 2014a; Henderson et al.,
2014b) have provided a common testbed and eval-
uation suite to facilitate direct comparisons among
DST models.

Two DST model categories are broadly known,
i.e, rule-based models and statistical models. Re-
cent studies on constrained Markov Bayesian
polynomial (CMBP) framework took the first step
towards bridging the gap between rule-based and
statistical approaches for DST (Sun et al., 2014a;
Yu et al., 2015). CMBP formulates rule-based
DST in a general way and allows data-driven rules
to be generated, so the performance can be im-
proved when training data is available. This en-
ables CMBP to achieve competitive performance
to the state-of-the-art statistical approaches, while
at the same time keeping most of the advantages of
rule-based models. Nevertheless, adding features
to CMBP is not as easy as in most other statis-
tical approaches because additional prior knowl-
edge is needed to be added to keep the search
space tractable (Sun et al., 2014a; Yu et al., 2015).
For the same reason, increasing the model com-
plexity is difficult. To tackle the weakness of
CMBP, recurrent polynomial network (RPN) (Sun
et al., 2015) is proposed to further bridge the gap
between rule-based and statistical approaches for
DST (Sun et al., 2015). RPN’s unique structure
enables the framework to have all the advantages
of CMBP. Additionally, RPN achieves more prop-
erties of statistical approaches than CMBP. RPN
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uses gradient descent where CMBP uses Hill-
climbing. Hence RPN can train its parameters
faster and the parameter space are not limited to
grid where parameters only takes values which are
a multiple of a constant.

SLU is usually the input module of tracker.
Hence its performance affect state tracking’s per-
formance greatly. However, it is hard to design
a reliable parser because of ASR errors and the
difficulty of obtaining in-domain data. Further, it
is a common case that SLU on a tracker’s train-
ing data is very different from SLU on a tracker’s
testing data in real world end-to-end dialogue sys-
tem. Thus, RPN is evaluated on SLUs with great
variance and especially in the case where SLU for
training mismatches SLU for testing. RPN shows
consistently best results among trackers investi-
gated on all SLUs.

The contribution of this paper is to investigate
more complex RPN structures with deeper layers,
multiple activation nodes and more features and to
evaluate RPN’s performance in mismatched SLU
condition.

The rest of the paper is organized as follows.
Section 2 introduces rule-based models and sta-
tistical models used in DST. Section 3 introduces
two frameworks – CMBP and RPN bridging rule-
based models and statistical models. Complex
RPN structures are also introduced in this section.
Section 4 discusses the influence of SLU on track-
ing and the SLU mismatch condition. Section 5
evaluates RPN with different structures and fea-
tures and these results are compared with state-of-
the-art trackers in DSTC-3. Rule-based models,
statistical models and mixed models’ performance
in cases where testing parser mismatches training
parser are also compared. Finally, section 6 con-
cludes the paper.

2 Rule-based and Statistical Models for
DST

The results of the DSTCs demonstrated the power
of statistical approaches, such as Maximum En-
tropy (MaxEnt) (Lee and Eskenazi, 2013), Con-
ditional Random Field (Lee, 2013), Deep Neural
Network (DNN) (Sun et al., 2014b), and Recurrent
Neural Network (RNN) (Henderson et al., 2014d).
However, statistical approaches have some dis-
advantages. For example, statistical approaches
sometimes show large variation in performance
and poor generalisation ability because of lack

of data (Williams, 2012). Moreover, statistical
models usually have a complex model structure
and complex features, and thus can hardly achieve
portability and interpretability.

In addition to statistical approaches, rule-based
approaches have also been investigated in DSTC
due to their efficiency, portability and inter-
pretability and some of them showed good perfor-
mance and generalisation ability in DSTC (Zilka
et al., 2013; Wang and Lemon, 2013).

However, the performance of rule-based mod-
els is usually not competitive to the best statis-
tical approaches. Furthermore, a general way is
lacking to design rule-based models with prior
knowledge and their performance can hardly be
improved when training data is available.

3 Bridging Rule-based models and
statistical models

There are two ways of bridging rule-based ap-
proaches and statistical approaches. One starts
from rule-based models and uses data-driven ap-
proaches to find a good rule, while the other one
is a statistical model taking advantage of prior
knowledge and constraints.

3.1 Constrained Markov Bayesian
Polynomial

Constrained Markov Bayesian Polynomial
(CMBP) (Sun et al., 2014a; Yu et al., 2015) takes
the first way of bridging rule-based models and
statistical models.

Several probability features extracted from SLU
results shown below are used in CMBP for each
slot (Sun et al., 2014a; Yu et al., 2015):

• P+
t (v): sum of scores of SLU hypotheses in-

forming or affirming value v at turn t

• P−t (v): sum of scores of SLU hypotheses
denying or negating value v at turn t

• P̃+
t (v) =

∑
v′ /∈{v,None} P

+
t (v′)

• P̃−t (v) =
∑

v′ /∈{v,None} P
−
t (v′)

• bt(v): belief of “the value being v at turn t”

• brt : probability of the value being None (the
value not mentioned) at turn t.

Because slots and values are assumed indepen-
dent in CMBP. To simplify the notation, these fea-
tures are denoted as P+

t , P
−
t , P̃

+
t , P̃

−
t , b

r
t , bt in the

rest of this paper.
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With these probability features , a CMBP model
is defined by

bt =P
(
P+
t , P

−
t , P̃

+
t , P̃

−
t , b

r
t−1, bt−1

)
s.t. constraints

(1)

where the P is a multivariate polynomial function
defined as

P(x1, · · · , xD) =
∑

0≤k1≤···≤kn≤D
gk1,··· ,kn

∏
1≤i≤n

xki

(2)
where ki is an index into input variables. n called
order of the CMBP is the order of the polynomial,
D denotes the number of inputs with x0 = 1 and
g is the parameter of CMBP.

In CMBP, prior knowledge or intuition is en-
coded by constraints in equation (1). For example,
intuition that goal belief should be unchanged or
positively correlated with the positive scores from
SLU can be written to a constraint:

∂P(P+
t+1, P

−
t+1, P̃

+
t+1, P̃

−
t+1, b

r
t , bt)

∂P+
t+1

≥ 0 (3)

Further, these constraints are approximated to
linear forms (Sun et al., 2014a; Yu et al., 2015).

With a set of linear constraints, integer lin-
ear programming can be used to get the integer
parameters which satisfy the relaxed constraints.
Then the tracking accuracy of each parameters
can be evaluated and the best one is picked out.
Hill-climbing can further be used to extend the
best integer-coefficient CMBP to real-coefficient
CMBP (Yu et al., 2015).

Note that in practice order 3 (n=3) is used to bal-
ance the performance and the complexity (Sun et
al., 2014a; Yu et al., 2015). 3-order CMBP has
achieved state-of-the art-performance on DSTC-
2/3.

3.2 Recurrent Polynomial Network

Recurrent Polynomial network (Sun et al., 2015)
takes the second way to bridge rule-based and sta-
tistical models. It is a computational network and
a statistical framework, which takes advantage of
prior knowledge by using CMBP to do initializa-
tion.

RPN contains two types of nodes, input node
or computational node. Every node x has a value
at every time t, denoted by u

(t)
x . The values of

computational nodes at time t are evaluated using

the nodes’ values at time t and the nodes’ values
at time t − 1 as inputs just like Recurrent Neural
Networks (RNNs).

Two types of edges are introduced to denote the
time relation between linked nodes. A node at
time t takes the value of a node at time t − 1 as
input when they are connected by type-1 edges,
while type-2 edges indicate that a node at time t
takes the value of a node at time t.

Let Ix denote the set of nodes which are con-
nected to node x by type-1 edges. Similarly, let
Îx denote the set of nodes which are connected to
node x by type-2 edges.

Generally, three types of computational node
are used in RPN, which are sum node, product
node and activation node.

• Sum node: For sum node x at time t, its value
u

(t)
x is the weighted sum of its inputs:

u(t)
x =

∑
y∈Ix

wx,yu
(t−1)
y +

∑
y∈Îx

ŵx,yu
(t)
y (4)

where wx,y, ŵx,y ∈ R are the weights of
edges.

• Product node: For product node x at time t,
its value u(t)

x is the product of its inputs. Note
that there may be multiple edges connecting
from node y to node x. Then node y’s value
should be multiplied to u(t)

x multiple times.
Formally, letMx,y and M̂x,y be the multiplic-
ity of the type-1 edge −→yx and the multiplicity
of the type-2 edge −→yx respectively. Node x’s
value u(t)

x is evaluated by

u(t)
x =

∏
y∈Ix

u(t−1)
y

Mx,y
∏
y∈Îx

u(t)
y

M̂x,y (5)

• Activation node: As the value of product
nodes and sum nodes are not bounded by cer-
tain range while the output belief should lie in
[0, 1], activation functions are needed to map
values from R to some interval such as [0, 1].
An activation function is a univariate func-
tion. If node x is an activation node, there is
only one type-2 edge linked to it.

Sun et al. (2015) investigated several acti-
vation functions and proposed an ascending,
continuous function softclip mapping from
R to [0, 1] which is linear on [ε, 1− ε] with ε
being a small value.
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Note that w, ŵ are the only parameters in RPN
while Mx,y and M̂x,y are constant given the struc-
ture of RPN and each node can be used as output
node in RPN.

3.2.1 Basic Structure
A basic 3-layer RPN shown in figure 1 is intro-
duced here to help understand the correlation be-
tween 3-order CMBP and RPN.

𝑏𝑡−1 𝑃𝑡
+ 𝑃𝑡

−  𝑃𝑡
+  𝑃𝑡

− 1 𝑏𝑡 𝑃𝑡+1
+ 𝑃𝑡+1

−  𝑃𝑡+1
+  𝑃𝑡+1

− 1

𝑏𝑡 𝑏𝑡+1

𝑤,  𝑤 𝑤,  𝑤

Figure 1: RPN for DST. (Here ”+” nodes are sum
nodes, ”×” nodes are product nodes)

For simplicity, (l, i) is used to denote the index
of the i-th node in the l-th layer. Then each layer
is defined as follows:

• First layer / Input layer: In this layer, input
nodes correspond to the variables in equation
(1), i.e. the value of 6 input nodes u(t)

(0,0) ∼
u

(t)
(0,5) are the same as variables bt−1, P+

t ,

P−t , P̃+
t , P̃−t , 1 in equation (1).

Feature brt−1 which is belief of the value at
time t − 1 being None is not used here
to make the RPN structure clear and com-
pact. Experiments show that performance of
CMBP without feature brt−1 would not de-
grade. It is not used by CMBP mentioned in
the rest of paper either.

• Second layer: Every product node x in the
second layer corresponds to a monomial in
equation (2). To express different monomi-
als, each triple of input nodes (1, k1), (1, k2),
(1, k3)(0 ≤ k1 ≤ k2 ≤ k3 ≤ 5) is enumer-
ated to link to a product node x = (2, i) in the
second layer and u(t)

x = u
(t)
(1,k1)u

(t)
(1,k2)u

(t)
(1,k3).

• Third layer: There is only one sum node
(3, 0) in the third layer corresponding to the
belief value calculated by a polynomial. With
the parameters set according to gk1,k2,k3 in
equation (2), the value u(t)

(3,0) is equal to bt

outputted by equation (1). It is the only out-
put node in this structure.

From the explanation of basic structure in this
section, it can be easily observed that a CMBP
can be used to initialize RPN and thus RPN can
achieve at least the same results with CMBP. So
prior knowledge and constraints are used to find
a suboptimum point in RPN parameter space and
RPN as a statistical approach, can further optimize
its parameters. Hence, RPN is a way of bridging
rule-based models and statistical models.

3.2.2 Complete Structure
It is easy to add features to RPN as a statistical
model. In the work of Sun et al. (2015), 4 more
features about user dialogue acts and machine acts
are introduced.

A new sum node x = (3, 1) in the third layer is
introduced to capture some property across turns
just like belief bt. Like the node (3, 0) that outputs
belief in the same layer, node (3, 1) takes input
from every product node in the second layer and is
used as input features at next time.

Further, to map the output belief to [0, 1], ac-
tivation nodes with softclip(·) as their activation
function are introduced.

The complete structure with the activation func-
tion, 4 more features and the new recurrent con-
nection is shown in figure 2.

𝑏𝑡 𝑏𝑡+1

𝑓1
(𝑡)

𝑓2
(𝑡)

𝑓8
(𝑡)

𝑓9
(𝑡)

𝑓1
(𝑡+1)

𝑓2
(𝑡+1)

𝑓8
(𝑡+1)

𝑓9
(𝑡+1)

Figure 2: RPN with new features and more com-
plex structure for DST (Sigmoid nodes mean acti-
vation)

The relation between a 3-order CMBP and the
basic structure is shown in section 3.2.1. Similarly,
the complete structure can also be initialized using
CMBP by setting the weights of edges that do not
appear in the basic structure to 0.

3.3 Complex RPN Structure
We next exam RPN’s power of utilizing more fea-
tures, multiple activation functions and a deeper
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structure with two interesting explorations on RPN
structure are shown in this section. Although these
extensions do not yield better results, this section
covers these extensions to show the flexibility of
the RPN approach.

3.3.1 Complex Structure
Firstly, to express a 4-order polynomial, simply
using the structure shown in figure 2 with in-
degree of nodes in the second layer increased to
4 would be sufficient. However, it can be ex-
pressed by a more compact RPN structure. To
simplify the explanation, the example RPN ex-
pressing 1 − (1 − (bt−1)2)(1 − (P+

t )2) is shown
in figure 3.

𝑏𝑡−1 𝑃𝑡
+ 1

𝑏𝑡

𝑏𝑡 𝑃𝑡+1
+ 1

𝑏𝑡+1

0
0

0 -1 0
1

0 1
0 0 0

-1
0
0
0 0 0 1

−10 0 0 0 1

0
0

0 -1 0
1

0 1
0 0 0

-1
0
0
0 0 0 1

−10 0 0 0 1

1 − (𝑏𝑡−1)
2 1 − (𝑃𝑡

+)2 1

Figure 3: RPN for polynomial 1 − (1 −
(bt−1)2)(1− (P+

t )2)

In figure 3, the first layer is used for input, and
the values of the product nodes in the second layer
are equal to the products of two features such as
(bt−1)2, bt−1P

+
t , (P+

t )2 and so on. Every sum
node in the third layer can express all the possi-
ble 2-order polynomial of features with weights
set accordingly. In figure 3, the values of the three
sum nodes are 1 − (bt−1)2, 1 − (P+

t )2 and 1 re-
spectively. Then similarly, with another product
nodes layer and sum nodes layer, the value of the
output node in the last layer equals the value of the
4-order polynomial (1− (bt−1)2)(1− (P+

t )2).
The complete RPN structure with same fea-

tures shown in figure 2, the new recurrent connec-
tion and activation nodes that expresses 4-order
CMBPs can be obtained similarly.

With limited sum nodes in the third layer, the
complexity of the model is much smaller than us-
ing a structure shown in figure 2 with product
node’s in-degree increased to 4 and increasing the

number of product nodes accordingly.

3.3.2 Complex Features
Secondly, RNN proposed by Henderson et
al. (2014c) uses n-gram of ASR results and ma-
chine acts. Similar to that, features of n-gram of
ASR results and machine acts are also investigated
in RPN. Since RPN used in this paper is a binary
classification model and assumes slots indepen-
dent of each other, the n-gram features proposed
by Henderson et al. (2014c) are modified in this
paper by removing/merging some features to make
the features independent of slots and values. When
tracking slot s and value v, the sum of confidence
scores of ASR hypothesises of the following cases
are extracted:

• V : confidence score of ASR hypothesises
where value v appears

• Ṽ : confidence score of ASR hypothesises
where values other than v appear

• V r: confidence score of ASR hypothesises
where no value appear

Similar features for slots can be extracted. Then
by looking at both slot and value features for ASR
results, we can get the combination of conditions
of slots and values.

n-gram features of machine acts about
the tracking slot and value are also used as
features. For example, given machine acts
hello() | inform(area=center)
| inform(food=Chinese) |
request(name), for slot food and value
Chinese, the n-gram machine act features are
hello, inform, request, inform+slot,
inform+value, inform+slot+value,
slot, value, slot+value. Features such as
request(name) are about slot name and hence
request+slot are not in the feature list.

To combine RPN with RNN proposed by Hen-
derson et al. (2014c), input nodes of these n-gram
features are not linked to product nodes in the sec-
ond layer. Instead, a layer of sum nodes followed
by a layer of activation nodes with sigmoid ac-
tivation function, which are equivalent to a layer
of neurons are introduced. These activation nodes
are linked to sum nodes in the third layer just like
product nodes in the second layer. The structure is
illustrated by figure 4 clearly.
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𝑏𝑡

𝑓1
(𝑡)

𝑓2
(𝑡)

𝑓8
(𝑡)

𝑓9
(𝑡) Additional features extracted from 

ASR and machine acts

Figure 4: RPN structure combined with RNN fea-
tures and structures

Experiments in section 5 show that these two
structures do not yield better results when initial-
ized randomly or initialized using 3-order CMBPs,
although the model complexity increases a lot.
This indicates the briefness and effectiveness of
the simple structure shown in figure 2.

4 Uncertainty in SLU

In an end-to-end dialogue system, there are two
challenges in spoken language understanding:
ASR errors and insufficient in-domain dialogue
data.

ASR errors make information contained in the
user’s utterance distorted or even missed. Thank-
fully, statistical approaches to SLU, trained on la-
beled in-domain examples, have been shown to be
relatively robust to ASR errors. (Mairesse et al.,
2009).

Even with an effective way to get SLU robust to
ASR errors, it is hard to implement these SLUs for
a new domain due to insufficient labelled data. In
DSTC-3, only little data of new dialogue domain
is provided.

Following the work of Zhu et al. (2014), the fol-
lowing steps are used to handle the two challenges
stated above:

• Data generation: with sufficient data in
restaurants domain in DSTC-2, data on
tourists domain using ontology of DSTC-3
can be generated. Utterance patterns of data
in the original domain are used to generate
data for the new domain of DSTC-3. After
preparing both the original data in DSTC-2
and the generated data of DSTC-3, a more

general parser for these two domains can be
built.

• ASR error simulation: after data generation,
ASR error simulation (Zhu et al., 2014) is
needed to make the prepared data resemble
ASR output with speech recognition errors to
train a parser robust to ASR errors. With a
simple mapping from the pattern of transcrip-
tion to the corresponding patterns of ASR n-
best hypotheses learned from existing data
and phone-based confusion for slot-values,
pseudo ASR n-best hypotheses can be ob-
tained. Note that methods proposed by Zhu
et al. (2014) only do ASR error simulation
for generated data in domain of DSTC-3 and
leave the original data in DSTC-2 as its origi-
nal ASR form,which may introduce the dif-
ference in the distribution between training
data and testing data on two different do-
mains for the tracker. So ASR error is sim-
ulated in data on both domains instead.

• Training: Using the data got from the
previous steps, a statistical parser can be
trained (Henderson et al., 2012). By varying
the fraction of simulated vs. real data, and the
simulated error rate, prior expectations about
operating conditions can be expressed.

Although a semantic parser with state-of-the-
art techniques can achieve good performance in
some degree, parsing without any error is impossi-
ble because it is typical that a semantic parser gets
high performance in speech patterns existing in the
training dataset, while it fails to predict the correct
semantics for some utterances unseen in training
dataset. So it is common for SLU performance to
differ significantly between training and test con-
ditions in real world end-to-end systems.

It has been widely observed that SLU influ-
ences state tracking greatly because the confidence
scores of SLU hypotheses are usually the key in-
puts for dialogue state tracking. When these confi-
dence scores become unreliable, the performance
of tracker is sure to degrade. Studies have shown
that it is possible to improve SLU accuracy as
compared to the live SLU in the DSTC data (Zhu
et al., 2014; Sun et al., 2014b). Hence, most of the
state-of-the-art results from DSTC-2 and DSTC-
3 used refined SLU (either explicitly rebuild a
SLU component or take the ASR hypotheses into
the trackers (Williams, 2014; Sun et al., 2014b;
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Henderson et al., 2014d; Henderson et al., 2014c;
Kadlec et al., 2014; Sun et al., 2014a)). Kadlec
et al.(2014) gets a tracking accuracy improvement
of 7.6% when they use SLU refined by themselves
instead of organiser-provided live SLU.

In semantic parser mismatch condition, the ac-
curacy of state tracking can degrade badly. Mis-
matched SLU problem is a main challenge in DST.
Trackers under mismatched SLU conditions are
investigated in this paper.

5 Experiments

5.1 RPN with Different Structures

In this section, the performance of three structures
shown in this paper is compared and RPN with
the simple structure is evaluated on DSTC-3 and
compared with the best submitted trackers. Only
joint goal accuracy which is the most difficult task
of DSTC-3 is of interest. Note that the integer-
coefficient CMBP with the best performance on
DSTC-2 is used to initialize RPN. As it is stated in
section 4, SLU designed in this paper focuses on
domain extension, so trackers are only evaluated
on DSTC-3.

Order n-gram features Acc L2
3 No 0.652 0.540
4 No 0.648 0.541
4 Yes 0.648 0.541

Table 1: Performance comparison among RPNs
with three structures on dstc3eval

The RPN structures that express 3-order CMBP,
4-order CMBP without n-gram features and 4-
order CMBP with n-gram features are evaluated.
Acc is the accuracy of tracker’s 1-best joint goal
hypothesis, the larger the better. L2 is the L2 norm
between correct joint goal distribution and distri-
bution tracker outputs, the smaller the better.

It can be seen from table 1 that the simple struc-
ture yields the best result. Note that parser used
here is explained in work (Zhu et al., 2014). Ex-
periments of the mismatched SLU case also use
this SLU for training.

For DSTC-3, it can be seen from table 2, RPN
trained on DSTC-2 can achieve state-of-the-art
performance on DSTC-3 without modifying track-
ing method, outperforming all the submitted track-
ers in DSTC-3 including the RNN system.

Note that the simple structure is used here with
SLU refined described in section 4. We picked the
best practical one on dstc2-test among SLUs intro-

System Approach Rank Acc L2
Baseline* Rule 6 0.575 0.691

Henderson et al. (2014c) RNN 1 0.646 0.538
Kadlec et al. (2014) Rule 2 0.630 0.627
Sun et al. (2014a) Int CMBP 3 0.610 0.556

RPN RPN 0.5 0.660 0.518

Table 2: Performance comparison among RPN,
real-coefficient CMBP and best trackers of DSTC-
3 on dstc3eval. Baseline* is the best results
from the 4 baselines in DSTC3.

duced in the following section as the training SLU
and testing SLU.

5.2 RPN with Mismatched Semantic Parsers

As section 4 stated, SLU is the input module for
dialogue state tracking whose confidence score is
usually directly used as probability features and
hence has tremendous effect on trackers. Handling
mismatched semantic parsers is a main challenge
to DST.

In this section, different tracking methods are
evaluated when there is a mismatch between train-
ing data and testing data. More specifically, dif-
ferent tracking models are trained with the same
fixed SLU and tested with different SLUs.

Three main categories of tracking models are
investigated: rule-based models, statistical models
and mixed models.

MaxEnt (Sun et al., 2014b) is a statistical
model. HWU baseline (Wang, 2013) is selected as
a competitive rule-based model. CMBP and RPN
are mixed models.

Four type of SLUs with different levels of per-
formance are used:

1 Original: SLU results provided by DSTC-3
organizer.

2 Train: SLU introduced in section 4 with
k(k = 25, 50) percent training data adding
ASR error simulation and parsed on ASR-
hypotheses.

3 Combined: SLU combining the Original type
SLU and Train type SLU using averaging.

4 Transcript: SLU introduced in section 4 with
k percent training data adding ASR error sim-
ulation and parsed on transcription. This
setup assumes an oracle speech recognizer: it
is not practical, and is included only for com-
parison.
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It has been shown that the organiser-provided
live SLU can be improved upon and so it is used
as the worst SLU in the following comparison.
Past work has shown that trained parser gets a per-
formance improvement when combined with the
one the organiser provided (Zhu et al., 2014). Us-
ing transcription for parsing gives a much more
reliable SLU results than using ASR hypothe-
ses. So generally speaking, performance of SLUs
of different types is quite distinguished to each
other. Six different SLUs whose performance
score shown in table 3 are investigated.

SLU type ASR error ICE Fscore Precision Recall
Original - 1.719 0.824 0.852 0.797

Train 25% 1.441 0.836 0.863 0.811
50% 1.425 0.837 0.862 0.813

Combined 25% 1.241 0.834 0.870 0.801
50% 1.235 0.835 0.869 0.803

Transcript 50% 0.893 0.915 0.956 0.877

Table 3: Performance of six different SLUs

Note that ASR error here is the percent of train-
ing data with ASR error simulation when training
SLU. The Item Cross Entropy (ICE) (Thomson et
al., 2008) between the N-best SLU hypotheses and
the semantic label assesses the overall quality of
the semantic items distribution, and is shown to
give a consistent performance ranking for both the
confidence scores and the overall correctness of
the semantic parser (Zhu et al., 2014). SLU with
the lower ICE has better performance.

Precision and recall are evaluated using only
SLU’s 1-best hypothesis where ICE takes all hy-
pothesises and their confidence score into consid-
eration.

In results shown in figure 5, the training dataset
for tracker is fixed, while testing dataset is out-
putted by different SLUs. The X-axis gives the
SLU ICE and Y-axis gives the tracking accuracy
on DSTC3-test. It can be observed that RPN
achieves highest accuracy on every SLU among
rule-based models, statistical models and mixed
models. Thus, RPN shows its robustness on mis-
matched semantic parsers, which demonstrates the
power of using both prior knowledge and being a
statistical approach.

After evaluating the mismatched case, the
matched case is also tested. When training dataset
and testing dataset are outputted by the same SLU,
RPN also outperforms all other models, shown in
figure 6.

It can be observed that RPN achieves the high-
est accuracy among RPN, CMBP, MaxEnt, and
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Figure 5: Trackers’ performances with mis-
matched semantic parsers
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Figure 6: Trackers’ performances with matched
semantic parser

HWU baseline whether there is a mismatch be-
tween training SLU and testing SLU or not.

6 Conclusion

Recurrent Polynomial Network demonstrated in
this paper is a recent framework to bridge rule-
based and statistical models. Several networks
are explored and the simple structure’s perfor-
mance outperforms others. Experiments show that
RPN outperforms many state-of-the-art trackers
on DSTC-3 and RPN performs best on all SLUs
with mismatched SLU.
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Appendix

Activation function

An activation function softclip(·) is a combina-
tion of logistic function and clip function. Let
ε denote a small value such as 0.01, δ de-
note the offset of sigmoid function such that
sigmoid (ε− 0.5 + δ) = ε. sigmoid function here
is defined as

sigmoid(x) =
1

1 + e−x
(6)

The softclip function is defined as

softclip(x) ,



sigmoid (x− 0.5 + δ)
if x ≤ ε

x

if ε < x < 1− ε
sigmoid (x− 0.5− δ)

if x ≥ 1− ε

(7)

It is a non-decreasing, continuous function,
which is linear on [ε, 1 − ε]. Its derivative is de-
fined as follows:

∂softclip(x)
∂x

,



∂sigmoid(x−0.5+δ)
∂x

if x ≤ ε
1

if ε < x < 1− ε
∂sigmoid(x−0.5−δ)

∂x

if x ≥ 1− ε
(8)

Training

Backpropagation through time (BPTT) using
mini-batch is used to train the network with batch
size 50. Gradients of weights are calculated and
accumulated within each batch. Gradients com-
puted for each timestep are propagated to the first
timestep. Mean squared error (MSE) is used as
the criterion to measure the distance of the output
belief to the correct belief distribution.

Derivative calculation

Let δ(t)x be the partial derivative of the cost func-
tion over value of node x, i.e., δ(t)x = ∂L

∂ux
. Sup-

pose node x = (d, i) is a sum node, then when

node x passes its error, the error of child node
y ∈ Îx is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t)
y

= δ(t)y + δ(t)x ŵx,y

(9)

Similarly, error of node y ∈ Ix is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t−1)
y

= δ(t)y + δ(t)x wx,y

(10)

Suppose node x = (d, i) is a product node, then
when node x passes its error, error of node y ∈ Îx
is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t)
y

= δ(t)y +

δ(t)x M̂x,yu
(t)
y

M̂x,y−1∏
z∈Îx−{y}

u(t)
z

M̂x,z
∏
z∈Ix

u(t−1)
z

Mx,z

(11)

Similarly, error of node y ∈ Ix is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t−1)
y

= δ(t)y +

δ(t)x Mx,yu
(t−1)
y

Mx,y−1∏
z∈Îx

u(t)
z

M̂x,z
∏

z∈Ix−{y}
u(t−1)
z

Mx,z

(12)
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