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ABSTRACT

Dialogue state tracking plays an important role in statistical
dialogue management. Domain-independent rule-based ap-
proaches are attractive due to their efficiency, portability and
interpretability. However, recent rule-based models are still
not quite competitive to statistical tracking approaches. In this
paper, a novel framework is proposed to formulate rule-based
models in a general way. In the framework, a rule is consid-
ered as a special kind of polynomial function satisfying cer-
tain linear constraints. Under some particular definitions and
assumptions, rule-based models can be seen as feasible solu-
tions of an integer linear programming problem. Experiments
showed that the proposed approach can not only achieve com-
petitive performance compared to statistical approaches, but
also have good generalisation ability. It is one of the only two
entries that outperformed all the four baselines in the third
Dialog State Tracking Challenge.

Index Terms— Dialogue management, Dialogue state
tracking, Rule-based model

1. INTRODUCTION

Dialogue state tracking plays an important role in dialogue
management because it directly influences the choice of ma-
chine dialogue acts of the system to interact with users. How-
ever, inevitable automatic speech recognition and spoken lan-
guage understanding (SLU) errors make it difficult to main-
tain the true dialogue state [1]. Hence, the distribution of dia-
logue states, also referred to as belief state, is usually tracked
in state-of-the-art spoken dialogue systems. A well-founded
theory for both dialogue state tracking and decision making
has been offered by Partially observable Markov decision pro-
cess (POMDP) framework [2–5]. Most earlier studies on state
tracking in POMDP were devoted to generative models. In
recent years, however, fundamental weaknesses of generative
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model was revealed by the results of [1]. In contrast, dis-
criminative state tracking models were successfully used for
spoken dialogue systems [6]. The results of the Dialog State
Tracking Challenge (DSTC) [7] have further demonstrated
the power of discriminative models.

Besides the change from generative models to discrim-
native models, there is another change which is from rule-
based approaches to statistical approaches. Historically, most
commercial systems have used hand-crafted rules for state
tracking, selecting the SLU result with the highest confidence
score so far and discarding alternatives [7, 8]. Conversely,
statistical approaches compute a posterior distribution over
multiple hypotheses for the dialogue state, and many compet-
itive results are reported. Although there are more compli-
cated rule-based approaches which can also compute scores
for multiple hypotheses [9–11], in general, the performance
of statistical approaches are shown superior in recent studies.
Up to now, many discriminative statistical approaches includ-
ing Maximum Entropy [12], Conditional Random Field [13],
Deep Neural Network (DNN) [14], and Recurrent Neural
Network [15] have been applied to dialogue state tracking
and achieved large gains over conventional rule-based base-
lines.

This paper, however, proposes a new general framework
to formulate rule-based models, which gets comparable or
even better results than many statistical approaches. The gen-
eral idea of the proposed approach is to depict rule-based
models as a special kind of polynomial functions satisfying
some linear constraints, referred to as Markov Bayesian Poly-
nomial (MBP). Under certain assumptions, rule-based mod-
els can be seen as feasible solutions of an integer linear pro-
gramming (ILP) problem, and generated. The models, i.e. the
generated polynomial functions are then evaluated on training
data to select the optimal model. Furthermore, as it is easy to
generate various MBPs and model combination is usually ef-
fective [8, 12, 14–16], score averaging based combination is
also investigated in this paper.

The DSTC provides a first common testbed in a stan-
dard format, along with a suite of evaluation metrics for di-
alogue state tracking [7]. To evaluate the effectiveness of the



proposed approach, both the dataset from the second Dialog
State Tracking Challenge (DSTC2) which is in restaurants do-
main [16], and the dataset from the third Dialog State Track-
ing Challenge (DSTC3) which is in tourists domain [17] are
used. For both of the datasets, the dialogue state tracker re-
ceives SLU N -best hypotheses for each user turn, each hy-
pothesis having a set of act-slot-value tuples with a confidence
score. The dialogue state tracker is supposed to output a set
of distributions for each of the three components of the di-
alogue state: joint goals, method, and combined requested
slots. Note that it is possible that in some turn, some slots of
the user’s goal have not appeared in any SLU output. In such
case, the labelled value is denoted as “the rest”.

The rest of the paper is organized as follows. Section 2
presents the Markov Bayesian Polynomial framework. Sec-
tion 3 describes rule generation in detail, followed by experi-
ments in section 4. Finally, section 5 concludes the paper.

2. MARKOV BAYESIAN POLYNOMIAL

Due to space limitation, only the rule based approach for joint
goals is described in detail in section 2 and 3. The approach
for method and combined requested slots can be obtained
with just slight modifications of the approach for joint goals.

2.1. Assumptions and definitions

Definition 1. For slot s, the i-th turn and value v 6= “the rest”,
p+s,i(v), p

−
s,i(v), p̃

+
s,i(v), p̃

−
s,i(v), b

r
s,i, and bs,i(v), are defined

as follows:

• p+s,i(v) Summation of the scores of the SLU hypotheses
informing or affirming that the value of slot s is v.

• p−s,i(v) Summation of the scores of the SLU hypotheses
denying or negating that the value of slot s is v.

• p̃+s,i(v) =
∑

v′ 6=v p
+
s,i(v

′) v′ 6= “the rest”

• p̃−s,i(v) =
∑

v′ 6=v p
−
s,i(v

′) v′ 6= “the rest”

• brs,i The belief of “the value of slot s being ‘the rest’
in the i-th turn” given by the rule-based model.

• bs,i(v) The belief of “the value of slot s being v in the
i-th turn” given by the rule-based model.

Different slots are assumed to be independent for the pro-
posed approach in this paper, so the belief of joint user goal
(s1 = v1, s2 = v2, . . .) in the i-th turn is calculated by:∏

j

b̂sj ,i(vj) (1)

where j enumerates all slots and b̂sj ,i(vj) = bsj ,i(vj) if vj is
not “the rest”, otherwise b̂sj ,i(vj) = brsj ,i.

The proposed approach is assumed to be independent of
slot, that is, different slots are assumed to use one common
model. Based on that, the slot index s will be omitted in the
following text to keep the notation uncluttered.

Without loss of generality, in this paper, the score from
SLU is assumed to have been mapped to [0, 1]; for each slot
of each turn, the sum of all scores from SLU is 1; the belief
given by the rule-based model is in [0, 1]; and the sum of all
beliefs given by the rule-based model in one turn is 1. With
these assumptions, the following inequalities hold:

0 ≤ p+i (v) ≤ 1 (2)

0 ≤ p−i (v) ≤ 1 (3)

0 ≤ p+i (v) + p−i (v) + p̃+i (v) + p̃−i (v) ≤ 1 (4)
0 ≤ bi(v) ≤ 1 (5)
0 ≤ bri ≤ 1 (6)

bri = 1−
∑
v′

bi(v
′) (7)

Definition 2. A Bayesian polynomial model is a general rule-
based model, defined as a polynomial function f to calculate
bi+1(v) , which satisfies inequalities (5), (6), (7):

• If i+ 1 > 0,

bi+1(v) = f(
⋃
j≤i

{p+j+1(v), p
−
j+1(v), p̃

+
j+1(v), p̃

−
j+1(v),

brj , bj(v)}) (8)

• Otherwise,

bi+1(v) = 0 (9)

Definition 3. A Bayesian Polynomial model is further called
a Markov Bayesian Polynomial (MBP) model if for i+1 > 0,

bi+1(v) = f(p+i+1(v), p
−
i+1(v), p̃

+
i+1(v), p̃

−
i+1(v), b

r
i , bi(v))

(10)

Definition 4. A regular MBP model of order k is an MBP
model with polynomial order k and all coefficients of f is in
{−1, 0, 1}.

In this paper, MBP, especially regular MBP is the focus.

2.2. Additional Constraints

Rule-based models that have good performance are supposed
to be found in the space of the regular MBP. One direct way
to check whether there exist good models in the space and
(if exist) further pick out the good models is by enumerating
all models in the space and testing them on the training data.
However, the trivial search space of regular MBP of order
k is 3(k+1)(k+2)(k+3)(k+4)(k+5)(k+6)/720, so despite that the
space of regular MBP is much smaller than that of definition 2



and 3, even for k = 3, the space is still too large to explore. It
is notable that although the space is large, most of the models
do not work well, so additional constraints from basic expe-
rience can be used to significantly reduce the number of bad
models. Adding these constraints can be considered as apply-
ing prior knowledges.

• If neither positive nor negative information is collected,
the belief should not change.

p+i+1(v) = 0 ∧ p−i+1(v) = 0 ∧ p̃+i+1(v) = 0∧
p̃−i+1(v) = 0⇒ bi+1(v) ≡ bi(v) (11)

where here “∧” and “⇒” are used to denote logical con-
junction and material implication respectively.

• If both ASR and SLU is perfectly correct, that is, 1
is assigned to all correct values and 0 to all incorrect
values, then the model should always give the correct
result. Considering the special case that there is only
one value which is not “the rest”, the following 3 con-
straints can be obtained.

p+i (v) = 1⇒ bi(v) ≥ 0.5 (12)

p−i (v) = 1⇒ bi(v) ≤ 0.5 (13)

p+i (v) = 0 ∧ p̃+i (v) = 1⇒ bi(v) ≤ 0.5 (14)

• The belief should be unchanged or positively correlated
with the positive scores from SLU.

∂f(x1, x2, x3, x4, x5, x6)

∂x1
≥ 0 (15)

where here the expression f is corresponding to defini-
tion 3, and x1, x2, . . . , x6 are variables used to express
the parameters of f .

• The belief should be unchanged or negatively corre-
lated with the negative scores from SLU.

∂f(x1, x2, x3, x4, x5, x6)

∂x2
≤ 0 (16)

• The belief should be unchanged or negatively corre-
lated with the sum of the positive scores of the other
values.

∂f(x1, x2, x3, x4, x5, x6)

∂x3
≤ 0 (17)

• The belief should be unchanged or positively correlated
with the sum of the negative scores of the other values.

∂f(x1, x2, x3, x4, x5, x6)

∂x4
≥ 0 (18)

• The belief of the current turn should be unchanged or
positively correlated with the belief of the last turn.

∂f(x1, x2, x3, x4, x5, x6)

∂x6
≥ 0 (19)

The constraints help significantly reduce the search space.
For example, with constraint (11), the trivial search space of
regular MBP of order k reduces to a 3(k+1)(k+2)/2-th of its
former size (The proof is not provided due to space limita-
tion). Different constraints contribute differently to the re-
duction of search space, and accurate analysis of search space
reduction with joint constraints is left for future exploration.
In later sections,M(k) is used to denote the space of the reg-
ular MBP of order k with constraints (11) - (19).

3. RULE GENERATION AND SELECTION

Since M(k) with k = 1 or k = 2 is too small with few el-
ements and M(k) with k ≥ 4 is too large to enumerate all
elements, M(3) is chosen as the suitable space to explore.
However, although M(3) is not very large, it is still diffi-
cult to enumerate all elements directly because it is hard to
check the exact constraints. The idea to solve that problem is
to enumerate a superset ofM(k) by relaxing the constraints.
With the relaxation, the exact constraints are approximated
by a number of easy-to-evaluate linear constraints. Superset
generation is then formulated as a problem of calculating all
feasible solutions of an ILP problem. Constraint relaxation is
reasonable because the aim of enumerating elements is to pro-
vide candidates for optimal rule selection: on the one hand,
no candidate will be lost if a superset is provided, on the other
hand, over-generation provides chances to find better models.
To simplify the presentation, the set consisting of all possible
(p+i (v), p

−
i (v), p̃

+
i (v), p̃

−
i (v), b

r
i , bi(v)) tuples is denoted by

X :

X = {(a1, a2, a3, a4, a5, a6)|0 ≤ a1 ≤ 1 ∧ 0 ≤ a2 ≤ 1∧
0 ≤ a3 ≤ 1 ∧ 0 ≤ a4 ≤ 1 ∧ a1 + a2 + a3 + a4 ≤ 1∧
0 ≤ a5 ≤ 1 ∧ 0 ≤ a6 ≤ 1 ∧ a5 + a6 ≤ 1} (20)

The coefficients of a polynomial ofM(3) is denoted by wijk:

f(a1, a2, a3, a4, a5, a6) =
∑

0≤i≤j≤k≤6

wijkaiajak (21)

where a0 = 1.
By definition 4, wijk is integer and

−1 ≤ wijk ≤ 1 (22)

The conversion from the exact constraints to the relaxed
linear constraints is discussed in detail as below. For approx-
imation purpose, two interval sequences, T5 and T10, need to
be defined first:

T5 = {0, 0.2, 0.4, 0.6, 0.8, 1}
T10 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}



A number of theorems are then proved for the constraints ap-
proximation.

Theorem 1. If a rule satisfies constraints (5), (6), (7), then
the rule satisfies the following sets of linear constraints:

{0 ≤ f(a) ≤ 1|a ∈ X , ai ∈ T5} (23)
{0 ≤ f(a) + f(b) ≤ 1|a, b ∈ X , a1 + a3 = b1 + b3,

a2 + a4 = b2 + b4, a1 ≤ b3, b1 ≤ a3, a2 ≤ b4, b2 ≤ a4,

a5 = b5, a5 + a6 + b6 = 1, ai, bi ∈ T5} (24)

Proof. The set of linear constraints (23) can be obtained by
constraint (5). By combining constraint (6) and (7), it can
be proved that 0 ≤

∑
v′ bi(v

′) ≤ 1. Thus the set of linear
constraints (24) can be obtained by considering the special
case that there are at least 2 values which are not “the rest”.

Theorem 2. A rule satisfies constraint (11) if and only if

w000 = w005 = w055 = w056 = w066 =

w555 = w556 = w566 = w666 = 0 (25)

and

w006 = 1 (26)

Proof. Suppose constraints (25) and (26) hold. Under the
condition p+i+1(v) = p−i+1(v) = p̃+i+1(v) = p̃−i+1(v) = 0,
then for all v, (p+i+1(v) = p−i+1(v) = 0) by definition 1 and
constraints (2)(3). Thus by definition 3 and equation (21)

bi+1(v) ≡ w000 + w005b
r
i + w055(b

r
i )

2 + w056b
r
i bi(v)

+ w066(bi(v))
2 + w555(b

r
i )

3 + w556(b
r
i )

2bi(v)

+ w566b
r
i (bi(v))

2 + w666(bi(v))
3 + w006bi(v)

≡ bi(v)

Therefore, constraint (11) holds. Reversely suppose con-
straint (11) holds, it is easy to check that under the condition
that p+i+1(v) = 0∧p−i+1(v) = 0∧ p̃+i+1(v) = 0∧ p̃−i+1(v) = 0,
if at least one of constraint (25) or (26) does not hold, the
identity “bi+1(v) ≡ bi(v)” does not hold.

Theorem 3. If a rule satisfies constraints (12), (13), (14), then
the rule satisfies the following set of linear constraints:

{f(1, 0, 0, 0, a5, 0) ≥ 0.5|a5 ∈ T10} (27)
{f(0, 1, 0, 0, a5, a6) ≤ 0.5|a5, a6 ∈ T10, a5 + a6 = 1}

(28)

{f(0, 0, 1, 0, a5, a6) ≤ 0.5|a5, a6 ∈ T10, a5 + a6 = 1}
(29)

Proof. The set of linear constraints (27) can be obtained
by simply combining constraint (12) and definition 3. The
derivations for the sets of linear constraints (28) and (29) are
similar.

Theorem 4. If a rule satisfies constraints (15), (16), (17),
(18), (19), then the rule satisfies the following sets of linear
constraints:

{f(a) ≥ f(b)|a,b ∈ X , ai ∈ T5,∀i 6= 1(ai = bi),

a1 = b1 + 0.1} (30)
{f(a) ≤ f(b)|a,b ∈ X , ai ∈ T5,∀i 6= 2(ai = bi),

a2 = b2 + 0.1} (31)
{f(a) ≤ f(b)|a,b ∈ X , ai ∈ T5,∀i 6= 3(ai = bi),

a3 = b3 + 0.1} (32)
{f(a) ≥ f(b)|a,b ∈ X , ai ∈ T5,∀i 6= 4(ai = bi),

a4 = b4 + 0.1} (33)
{f(a) ≥ f(b)|a,b ∈ X , ai ∈ T5,∀i 6= 6(ai = bi),

a6 = b6 + 0.1} (34)

Proof. The rule satisfies the set of linear constraints (30) is
because constraint (15) indicates f(x1, x2, x3, x4, x5, x6) is
monotonically increasing with respect to x1. The derivations
for the other sets of linear constraints are similar.

By theorem 1, 2, 3 and 4, it can be seen that the linear
constraints (23) - (34) relax the constraints (5) - (7), (11) -
(19). Therefore, the optimal MBP for joint goals can be de-
scribed as the solution of the following integer programming
(IP) problem:

maximize L(w001, w002, . . . , w666)

subject to constraints (22)− (34)

and ∀0 ≤ i ≤ j ≤ k ≤ 6 (wijk ∈ Z)

where L(w001, w002, . . . , w666) is the accuracy of the perfor-
mance of MBP with coefficients w001, w002, . . . , w666 on the
training dataset and development dataset of DSTC2 whose
details are described in section 4.1. Here the optimal MBP
is selected from a superset ofM(3) (denoted by S) which is
a relatively small set of valid MBP described by linear con-
straints (22) - (34). Note that each element of S is corre-
sponding to a rule-based model. In practice, it takes 2 steps
to solve that IP problem. First, S can be obtained with some
ILP solvers by calculating all feasible solutions of linear con-
straints (22) - (34), which can be regarded as a special kind of
ILP problem whose objective function is to optimize a con-
stant dummy variable. In this work, SCIP [18] was used for
calculation of all feasible solutions. Next, every element of S
is evaluated by L(·), and the element maximizing L(·), that is,
the optimal rule for joint goals (denoted by f∗g ), is the solution
of the IP problem.

The optimal rule for method denoted by f∗m and the opti-
mal rule for combined requested slots denoted by f∗r can be
obtained following similar steps with slightly modifying the
definitions and constraints in section 2. f∗ is used to denote
the combined rule which utilizes f∗g , f∗m, and f∗r for track-
ing joint goals, method, and combined requested slots respec-
tively.



4. EXPERIMENT

4.1. Data description

Datasets of DSTC2 and DSTC3 are listed in table 1.

Dataset ASR DM Number of dialogues
dstc2 train

0,1
0,1 1612

dstc2 dev 0,1 506
dstc2 test 2 1117
dstc3 seed 2,3 3,4,5,6 10
dstc3 test 3,4,5,6 2265

Table 1. Speech recognisers (ASR), dialogue managers (DM)
and the number of dialogues of different datasets. Different
numbers in column ASR and DM indicate different speech
recognisers and dialogue managers respectively.

Since our previous work showed the live semantic infor-
mation was not good enough with some information lost [14],
all experiments in this paper used the output from a new im-
plemented semantic parser whose details are shown in [14]
and [19] instead of the live SLU. The training dataset and
the development dataset of DSTC2 are combined to form the
dataset for optimal MBP model selection.

4.2. Performance

As recommended by DSTC2 and DSTC3, Accuracy measur-
ing 1-best quality, L2 norm measuring probability calibra-
tion are selected as evaluation metrics in this paper. More-
over, schedule 2 and labelling scheme A [20] are employed.
There are 4 baseline trackers provided by the DSTC organis-
ers. They are the baseline tracker (Baseline), the focus tracker
(Focus), the HWU tracker (HWU) and the HWU tracker with
“original” flag set to (HWU+) respectively.

Goal Method Request
Baseline 0.668 0.846 0.945

Focus 0.743 0.926 0.924
HWU 0.750 0.934 0.932

HWU+ 0.720 0.932 0.934
DNN 0.755 0.942 0.979
f∗ 0.760 0.934 0.979

Table 2. Accuracy of performance of f∗ compared with DNN
and 4 baselines on the test dataset of DSTC2 (dstc2 test).

f∗ was tested on the test dataset of DSTC2 and the result
is shown in table 2. It can be seen from the result that f∗ per-
forms significantly better than all baselines of DSTC21, and
has competitive performance compared to the DNN approach
in our previous work [14].

f∗ was then tested on the test dataset of DSTC3, which
tests the generalisation ability. It can be seen from table 3 that
the proposed approach has better generalisation ability than
the DNN approach.

1Test of significance shows it is at the 95% level that f∗ has higher ac-
curacy of joint goals than that of all baselines except for HWU where more
data is needed to claim the significance with 95% confidence.

Goal Method Request

Accuracy DNN 0.583 0.968 0.945
f∗ 0.606 0.968 0.945

L2 DNN 0.583 0.053 0.091
f∗ 0.561 0.091 0.090

Table 3. Performance of f∗ compared with DNN on the test
dataset of DSTC3 (dstc3 test)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
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Fig. 1. Accuracy of performance among 28 trackers in
DSTC3. Entry0 is the proposed approach with score aver-
aging. Baseline* is the result of the best results from the 4
baselines in DSTC3.

As it is easy to generate various MBPs with the proposed
approach, instead of only using the rule with the highest ac-
curacy, for joint goals, score averaging was investigated and
found to have better result than only using the rule with the
highest accuracy. Therefore, the model submitted to DSTC3
was a model which used f∗m and f∗r for method and requested
slots respectively and used a combined model which outputs
the average score of the 5 rules with the highest accuracy in
M(3) for joint goals. With score averaging, the accuracy for
joint goal increases further from f∗’s 0.606 to 0.610 and it
is found to be one of the only two entries that outperformed
all the four baselines in DSTC3. The performance of the pro-
posed approach with score averaging in DSTC3 is shown in
figure 12.

5. CONCLUSION

This paper proposes a novel framework, referred to as Markov
Bayesian Polynomial (MBP), to formulate rule-based mod-
els. Rule-based models are depicted as a special kind of poly-
nomial functions satisfying some linear constraints. Experi-
ments show the proposed approach not only has competitive

2For readers who are interested in performance of MBP with the original
live SLU, the result is as follows: the accuracy of f∗ using the original live
SLU for joint goals, method, and requested slots is 0.582, 0.967, 0.909
respectively, while the result of bestline* in figure 1 is 0.575, 0.967, 0.778.



performance, but also has relative good generalisation ability.
Future work will further discuss the constraints for rule for-
mulation, and explore applying MBP to a wide variety of do-
mains. Furthermore, because our most recent result has sug-
gested that polynomial functions with real coefficients have
even better performance, the future work will also do some
more research work on polynomial functions with real coeffi-
cients.
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